Coupled oscillators for modeling and analysis of EEG/MEG oscillations

被引:13
作者
Leistritz, Lutz
Putsche, Peter
Schwab, Karin
Hesse, Wolfram
Suesse, Thomas
Haueisen, Jens
Witte, Herbert
机构
[1] Univ Jena, Fac Med, Inst Med Stat Comp Sci & Documentat, D-07740 Jena, Germany
[2] Univ Jena, Fac Med, Dept Neurol, Biomagnet Ctr, D-07740 Jena, Germany
[3] Tech Univ Ilmenau, Inst Biomed Engn & Informat, D-98684 Ilmenau, Germany
来源
BIOMEDIZINISCHE TECHNIK | 2007年 / 52卷 / 01期
关键词
coupled oscillators; EEG; MEG; model-based signal analysis; parameter identification;
D O I
10.1515/BMT.2007.016
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This study presents three EEG/MEG applications in which the modeling of oscillatory signal components offers complementary analysis and an improved explanation of the underlying generator structures. Coupled oscillator networks were used for modeling. Parameters of the corresponding ordinary coupled differential equation (ODE) system are identified using EEG/MEG data and the resulting solution yields the modeled signals. This model-related analysis strategy provides information about the coupling quantity and quality between signal components (example 1, neonatal EEG during quiet sleep), allows identification of the possible contribution of hidden generator structures (example 2, 600-Hz MEG oscillations in somatosensory evoked magnetic fields), and can explain complex signal characteristics such as amplitude-frequency coupling and frequency entrainment (example 3, EEG burst patterns in sedated patients).
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [21] MEG, EEG AND ECOG - DISCUSSION
    BAUMGARTNER, C
    ACTA NEUROLOGICA SCANDINAVICA, 1994, 89 : 91 - 92
  • [22] Time-Variant Phase-Locking Properties of EEG/MEG Oscillations during Photic Driving
    Wacker, M.
    Schwab, K.
    Galicki, M.
    Witte, H.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 2008 - 2011
  • [23] Analysis of coupled quantum parametric harmonic oscillators by classical nonlinear modeling
    Matsuura, Keita
    Nakamura, Ibuki
    Fujisaka, Hisato
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2022, 13 (03): : 570 - 581
  • [24] MARKOV CHAIN MODELING AND ANALYSIS OF COMPLICATED PHENOMENA IN COUPLED CHAOTIC OSCILLATORS
    Nishio, Yoshifumi
    Komatsu, Yuta
    Uwate, Yoko
    Hasler, Martin
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2010, 19 (04) : 801 - 818
  • [25] Validating EEG, MEG and Combined MEG and EEG Beamforming for an Estimation of the Epileptogenic Zone in Focal Cortical Dysplasia
    Neugebauer, Frank
    Antonakakis, Marios
    Unnwongse, Kanjana
    Parpaley, Yaroslav
    Wellmer, Joerg
    Rampp, Stefan
    Wolters, Carsten H.
    BRAIN SCIENCES, 2022, 12 (01)
  • [26] A methodological framework for inverse-modeling of propagating cortical activity using MEG/EEG
    Hindriks, Rikkert
    NEUROIMAGE, 2020, 223
  • [27] Predictive regression modeling with MEG/EEG: from source power to signals and cognitive states
    Sabbagh, David
    Ablin, Pierre
    Varoquaux, Gael
    Gramfort, Alexandre
    Engemann, Denis A.
    NEUROIMAGE, 2020, 222
  • [28] A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies
    Puce, Aina
    Hamalainen, Matti S.
    BRAIN SCIENCES, 2017, 7 (06)
  • [29] A novel method for reliable and fast extraction of neuronal EEG/MEG oscillations on the basis of spatio-spectral decomposition
    Nikulin, Vadim V.
    Nolte, Guido
    Curio, Gabriel
    NEUROIMAGE, 2011, 55 (04) : 1528 - 1535
  • [30] Visual gamma oscillations: The effects of stimulus type, visual field coverage and stimulus motion on MEG and EEG recordings
    Muthukumaraswamy, S. D.
    Singh, K. D.
    NEUROIMAGE, 2013, 69 : 223 - 230