Coupled oscillators for modeling and analysis of EEG/MEG oscillations

被引:13
作者
Leistritz, Lutz
Putsche, Peter
Schwab, Karin
Hesse, Wolfram
Suesse, Thomas
Haueisen, Jens
Witte, Herbert
机构
[1] Univ Jena, Fac Med, Inst Med Stat Comp Sci & Documentat, D-07740 Jena, Germany
[2] Univ Jena, Fac Med, Dept Neurol, Biomagnet Ctr, D-07740 Jena, Germany
[3] Tech Univ Ilmenau, Inst Biomed Engn & Informat, D-98684 Ilmenau, Germany
来源
BIOMEDIZINISCHE TECHNIK | 2007年 / 52卷 / 01期
关键词
coupled oscillators; EEG; MEG; model-based signal analysis; parameter identification;
D O I
10.1515/BMT.2007.016
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This study presents three EEG/MEG applications in which the modeling of oscillatory signal components offers complementary analysis and an improved explanation of the underlying generator structures. Coupled oscillator networks were used for modeling. Parameters of the corresponding ordinary coupled differential equation (ODE) system are identified using EEG/MEG data and the resulting solution yields the modeled signals. This model-related analysis strategy provides information about the coupling quantity and quality between signal components (example 1, neonatal EEG during quiet sleep), allows identification of the possible contribution of hidden generator structures (example 2, 600-Hz MEG oscillations in somatosensory evoked magnetic fields), and can explain complex signal characteristics such as amplitude-frequency coupling and frequency entrainment (example 3, EEG burst patterns in sedated patients).
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [1] Dynamic Causal Modeling for EEG and MEG
    Kiebel, Stefan J.
    Garrido, Marta I.
    Moran, Rosalyn
    Chen, Chun-Chuan
    Friston, Karl J.
    HUMAN BRAIN MAPPING, 2009, 30 (06) : 1866 - 1876
  • [2] Source Connectivity Analysis With MEG and EEG
    Schoffelen, Jan-Mathijs
    Gross, Joachim
    HUMAN BRAIN MAPPING, 2009, 30 (06) : 1857 - 1865
  • [3] MEG/EEG Group Analysis With Brainstorm
    Tadel, Francois
    Bock, Elizabeth
    Niso, Guiomar
    Mosher, John C.
    Cousineau, Martin
    Pantazis, Dimitrios
    Leahy, Richard M.
    Baillet, Sylvain
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [4] Faith and oscillations recovered: On analyzing EEG/MEG signals during tACS
    Neuling, Toralf
    Ruhnau, Philipp
    Weisz, Nathan
    Herrmann, Christoph S.
    Demarchi, Gianpaolo
    NEUROIMAGE, 2017, 147 : 960 - 963
  • [5] A guideline for head volume conductor modeling in EEG and MEG
    Vorwerk, Johannes
    Cho, Jae-Hyun
    Rampp, Stefan
    Hamer, Hajo
    Knoesche, Thomas R.
    Wolters, Carsten H.
    NEUROIMAGE, 2014, 100 : 590 - 607
  • [6] THE LOCAL SUBTRACTION APPROACH FOR EEG AND MEG FORWARD MODELING
    Hoeltershinken, Malte b.
    Lange, Pia
    Erdbruegger, Tim
    Buschermoehle, Yvonne
    Wallois, Fabrice
    Ii, Alena buyx
    Pursiainen, Sampsa
    Vorwerk, Johannes
    Engwer, Christian
    Wolters, Carsten h.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2025, 47 (01) : B160 - B189
  • [7] Data-Driven Modeling of Phase Interactions Between Spontaneous MEG Oscillations
    Hindriks, Rikkert
    Bijma, Fetsje
    van Dijk, Bob W.
    Stam, Cornelis J.
    van der Werf, Ysbrand D.
    van Someren, Eus J. W.
    de Munck, Jan C.
    van der Vaart, Aad W.
    HUMAN BRAIN MAPPING, 2011, 32 (07) : 1161 - 1178
  • [8] Bayesian analysis of phase data in EEG and MEG
    Dimmock, Sydney
    O'Donnell, Cian
    Houghton, Conor
    ELIFE, 2023, 12
  • [9] Conservative Finite Element Modeling of EEG and MEG on Unstructured Grids
    Yavich, N.
    Koshev, N.
    Malovichko, M.
    Razorenova, A.
    Fedorov, M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (03) : 647 - 656
  • [10] Inverse and forward modeling of interictal spikes in the EEG, MEG and ECoG
    Huiskamp, GJM
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 1393 - 1394