Euclidean diagrams and mathematical justification

被引:0
|
作者
Dal Magro, Tamires [1 ]
机构
[1] Univ Fed Santa Catarina UFSC, Area Epistemol & Log, PNPD CAPES, Florianopolis, SC, Brazil
来源
DISPUTATIO-PHILOSOPHICAL RESEARCH BULLETIN | 2020年 / 9卷 / 14期
关键词
Philosophy of Mathematical Practice; Proof; Euclid; Diagrammatical Reasoning; PHILOSOPHY; GEOMETRY;
D O I
暂无
中图分类号
B [哲学、宗教];
学科分类号
01 ; 0101 ;
摘要
This work presents a historical overview of the problems dealt with by three major conceptions in the philosophy of mathematics: traditional, maverick and conciliatory. In the second and third sections, I focus on showcasing (1) how the use of diagrams in mathematics, and more specifically in Euclidean geometry, was strongly criticized by authors aligned with the first conception and (2) the impact of those criticisms in the re-evaluation and revindication of the legitimacy of the use of diagrams in Euclid by authors aligned with the last two conceptions.
引用
收藏
页码:73 / 102
页数:30
相关论文
共 50 条
  • [41] Anisotropic isoparametric hypersurfaces in Euclidean spaces
    Ge, Jianquan
    Ma, Hui
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 41 (03) : 347 - 355
  • [42] Rigidity of submanifolds in the Euclidean and spherical spaces
    da Silva, Jonatan F.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco Antonio L.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (01) : 159 - 165
  • [43] Fractal and Euclidean descriptors of platelet shape
    Kraus, Max-Joseph
    Neeb, Heiko
    Strasser, Erwin F.
    PLATELETS, 2014, 25 (07) : 488 - 498
  • [44] Ricci flow on asymptotically Euclidean manifolds
    Li, Yu
    GEOMETRY & TOPOLOGY, 2018, 22 (03) : 1837 - 1891
  • [45] Quantum Euclidean spaces with noncommutative derivatives
    Gao, Li
    Junge, Marius
    McDonald, Edward
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2022, 16 (01) : 153 - 213
  • [46] Mathematical and Elemental Coordinates: The Role of Imagination
    Freydberg, Bernard
    RESEARCH IN PHENOMENOLOGY, 2014, 44 (02) : 161 - 169
  • [47] Presentations for the Euclidean Picard modular groups
    Polletta, David
    GEOMETRIAE DEDICATA, 2021, 210 (01) : 1 - 26
  • [48] An efficient representation of Euclidean gravity I
    Lee, Jungjai
    Oh, John J.
    Yang, Hyun Seok
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12):
  • [49] From Euclidean geometry to knots and nets
    Brendan Larvor
    Synthese, 2019, 196 : 2715 - 2736
  • [50] The mechanics of non-Euclidean plates
    Sharon, Eran
    Efrati, Efi
    SOFT MATTER, 2010, 6 (22) : 5693 - 5704