Euclidean diagrams and mathematical justification

被引:0
|
作者
Dal Magro, Tamires [1 ]
机构
[1] Univ Fed Santa Catarina UFSC, Area Epistemol & Log, PNPD CAPES, Florianopolis, SC, Brazil
来源
DISPUTATIO-PHILOSOPHICAL RESEARCH BULLETIN | 2020年 / 9卷 / 14期
关键词
Philosophy of Mathematical Practice; Proof; Euclid; Diagrammatical Reasoning; PHILOSOPHY; GEOMETRY;
D O I
暂无
中图分类号
B [哲学、宗教];
学科分类号
01 ; 0101 ;
摘要
This work presents a historical overview of the problems dealt with by three major conceptions in the philosophy of mathematics: traditional, maverick and conciliatory. In the second and third sections, I focus on showcasing (1) how the use of diagrams in mathematics, and more specifically in Euclidean geometry, was strongly criticized by authors aligned with the first conception and (2) the impact of those criticisms in the re-evaluation and revindication of the legitimacy of the use of diagrams in Euclid by authors aligned with the last two conceptions.
引用
收藏
页码:73 / 102
页数:30
相关论文
共 50 条
  • [21] High School Students' Use of Diagrams in Geometry Proofs
    Dundar, Ruveyda Karaman
    Otten, Samuel
    INTERNATIONAL JOURNAL OF SCIENCE AND MATHEMATICS EDUCATION, 2023, 21 (03) : 737 - 759
  • [22] Isocrates and the justification of rhetorical life
    Schirren, Thomas
    ALLGEMEINE ZEITSCHRIFT FUR PHILOSOPHIE, 2019, 44 (02): : 179 - 213
  • [23] Justification in Mathematics and its Teaching
    Jahnke, Hans Niels
    Kroemer, Ralf
    JOURNAL FUR MATHEMATIK-DIDAKTIK, 2020, 41 (02): : 459 - 484
  • [24] Euclidean N=2 supergravity
    Gutowski, Jan B.
    Sabra, W. A.
    PHYSICS LETTERS B, 2012, 718 (02) : 610 - 614
  • [25] Structural properties of Euclidean rhythms
    Gomez-Martin, Francisco
    Taslakian, Perouz
    Toussaint, Godfried
    JOURNAL OF MATHEMATICS AND MUSIC, 2009, 3 (01) : 1 - 14
  • [26] Euclidean hypersurfaces isometric to spheres
    Li, Yanlin
    Bin Turki, Nasser
    Deshmukh, Sharief
    Belova, Olga
    AIMS MATHEMATICS, 2024, 9 (10): : 28306 - 28319
  • [27] Euclidean arrangements in Banach spaces
    Fresen, Daniel J.
    STUDIA MATHEMATICA, 2015, 227 (01) : 55 - 76
  • [28] Pre-Euclidean geometry and Aeginetan coin design: some further remarks
    Gerhard Michael Ambrosi
    Archive for History of Exact Sciences, 2012, 66 : 557 - 583
  • [29] Pregeometry and euclidean quantum gravity
    Wetterich, Christof
    NUCLEAR PHYSICS B, 2021, 971