ON THE HOMOLOGY OF THE COMMUTATOR SUBGROUP OF THE PURE BRAID GROUP

被引:1
作者
Bianchi, Andrea [1 ,2 ]
机构
[1] Univ Bonn, Math Inst, Endenicher Allee 60, Bonn, Germany
[2] Univ Copenhagen, Dept Math Sci, Univ Pk 5, Copenhagen, Denmark
关键词
Pure braid group; commutator subgroup; cohomological dimension; MILNOR FIBER; COHOMOLOGY;
D O I
10.1090/proc/15404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the homology of [P-n, P-n], the commutator subgroup of the pure braid group on n strands, and show that H-l([P-n, P-n]) contains a free abelian group of infinite rank for all 1 <= l <= n - 2. As a consequence we determine the cohomological dimension of [P-n, P-n]: for n >= 2 we have cd([P-n, P-n]) = n - 2.
引用
收藏
页码:2387 / 2401
页数:15
相关论文
共 19 条
[1]  
Arnold VI., 1969, MAT ZAMETKI, V5, P227
[2]  
Artin E, 1925, Abh Aus Dem Math Semin Universitat Hambg, V4, P47, DOI [DOI 10.1007/BF02950718, 10.1007/BF02980599, DOI 10.1007/BF02980599]
[3]   Topological complexity of unordered configuration spaces of surfaces [J].
Bianchi, Andrea ;
Recio-Mitter, David .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (03) :1359-1384
[4]   Cohomology of affine Artin groups and applications [J].
Callegaro, Filippo ;
Moroni, Davide ;
Salvetti, Mario .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (08) :4169-4188
[5]   The homology of the Milnor fiber for classical braid groups [J].
Callegaro, Filippo .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 :1903-1923
[6]   Arithmetic properties of the cohomology of braid groups [J].
De Concini, C ;
Procesi, C ;
Salvetti, M .
TOPOLOGY, 2001, 40 (04) :739-751
[7]  
DECONCINI C, 1999, ANN SCUOLA NORM SUP, V28, P695
[8]   The Orlik-Solomon complex and Milnor fibre homology [J].
Denham, G .
TOPOLOGY AND ITS APPLICATIONS, 2002, 118 (1-2) :45-63
[9]  
Djawadi D., 2009, THESIS
[10]  
FADELL E, 1962, MATH SCAND, V10, DOI DOI 10.7146/MATH.SCAND.A-10517