Convexity inequalities for positive operators

被引:21
作者
Haase, Markus [1 ]
机构
[1] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
关键词
positive operator; pointwise inequality; Holder inequality; Jensen inequality; Riesz-Thorin interpolation theorem;
D O I
10.1007/s11117-006-1975-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove pointwise convexity (Jensen-type) inequalities of the form F(Tf) <= T[F(f)] where F is a convex function defined on a convex subset of some Banach space X and T is the X-valued extension of a positive operator on some function space. Examples include the pointwise Holder inequality T(fg) <= (Tf-p)(1/p) (Tf-q)(1/q) for a positive sublinear operator T. As applications we consider vector-valued conditional expectation and a "real" proof of the Riesz-Thorin theorem for positive operators.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 12 条
[1]  
Abramovich Y.A., 2002, Graduate Studies in Mathematics, V50
[2]  
[Anonymous], DEGRUYTER STUDIES MA
[3]  
[Anonymous], INTEGRATION
[4]  
BENNETT C, 1988, PURE APPL MATH, V129
[5]  
Diestel J., 1977, MATH SURVEYS, V15
[6]  
DUNFORD N, 1958, PURE APPL MATH, V6
[7]  
Ekeland I., 1976, STUDIES MATH ITS APP, V1
[8]  
Grafakos L., 2004, CLASSICAL MODERN FOU
[9]  
Krein S. G., 1982, TRANSLATIONS MATH MO, V54
[10]   Positive bilinear operators in Calderon-Lozanovskii spaces [J].
Maligranda, L .
ARCHIV DER MATHEMATIK, 2003, 81 (01) :26-37