COMPOSITE KERNEL CLASSIFICATION USING SPECTRAL-SPATIAL FEATURES AND ABUNDANCE INFORMATION OF HYPERSPECTRAL IMAGE

被引:0
|
作者
Sun, Yanli [1 ]
Zhang, Xia [2 ]
机构
[1] China Acad Elect & Informat Technol, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China
来源
2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS) | 2018年
关键词
Hyperspectral imagery classification; Extended multi-attribute profiles; Abundance information; Composite kernel; Sparse multinomial logistic regression; MULTINOMIAL LOGISTIC-REGRESSION; PROFILES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a composite kernel classification approach by exploiting both the spectral-spatial information and abundance information of hyperspectral image. The classifier adopted in this work is the multinomial logistic regression, and the spatial information is modeled from extended multi-attribute profiles(EMAPs). The class-based endmember extraction and sparse unmixing method was used to obtain the abundance information. The state-of-the art performance of the proposed approach is illustrated with real hyperspectral data sets collected by the NASA Jet Propulsion Laboratory's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) over the Indian Pines region, Indiana.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Iterative Hyperspectral Image Classification Using Spectral-Spatial Relational Features
    Guccione, Pietro
    Mascolo, Luigi
    Appice, Annalisa
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (07): : 3615 - 3627
  • [2] Hyperspectral Image Classification Using Spectral-Spatial Features With Informative Samples
    Shu, Wen
    Liu, Peng
    He, Guojin
    Wang, Guizhou
    IEEE ACCESS, 2019, 7 : 20869 - 20878
  • [3] Learning Hierarchical Spectral-Spatial Features for Hyperspectral Image Classification
    Zhou, Yicong
    Wei, Yantao
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (07) : 1667 - 1678
  • [4] Spectral-spatial classification of hyperspectral images using different spatial features and composite kernels
    Ben Salem, Rafika
    Ettabaa, Karim Saheb
    Hamdi, Mohamed Ali
    2014 FIRST INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS CONFERENCE (IPAS), 2014,
  • [5] A Hyperspectral Image Classification Method Based on Spectral-Spatial Features
    Fu Qing
    Guo Chen
    Luo Wenlang
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (20)
  • [6] Hyperspectral image classification using spectral-spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    NEUROCOMPUTING, 2019, 328 : 39 - 47
  • [7] Hyperspectral Image Classification Using Spectral-Spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    COMPUTER VISION, PT I, 2017, 771 : 577 - 588
  • [8] Spectral-Spatial Large Kernel Attention Network for Hyperspectral Image Classification
    Wu, Chunran
    Tong, Lei
    Zhou, Jun
    Xiao, Chuangbai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [9] Spectral-Spatial Classification of Hyperspectral Image Using Autoencoders
    Lin, Zhouhan
    Chen, Yushi
    Zhao, Xing
    Wang, Gang
    2013 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2013,
  • [10] Hyperspectral Image Classification Using Spectral-Spatial Composite Kernels Discriminant Analysis
    Li, Hong
    Ye, Zhijing
    Xiao, Guangrun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2341 - 2350