Distance-transitive graphs admit semiregular automorphisms

被引:11
作者
Kutnar, Klavdija [1 ,2 ]
Sparl, Primoz [3 ,4 ]
机构
[1] Univ Primorska, FAMNIT, Koper 6000, Slovenia
[2] Univ Primorska, PINT, Koper 6000, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[4] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
PERMUTATION-GROUPS; SUBGROUPS; DIGRAPHS;
D O I
10.1016/j.ejc.2009.03.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A distance-transitive graph is a graph in which for every two ordered pairs of vertices (u, v) and (u', v') such that the distance between u and v is equal to the distance between u' and v' there exists an automorphism of the graph mapping u to u' and u to v'. A semiregular element of a permutation group is a nonidentity element having all cycles of equal length in its cycle decomposition. It is shown that every distance-transitive graph admits a semiregular automorphism. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:25 / 28
页数:4
相关论文
共 18 条
[1]   LIFTING HAMILTON CYCLES OF QUOTIENT GRAPHS [J].
ALSPACH, B .
DISCRETE MATHEMATICS, 1989, 78 (1-2) :25-36
[2]  
Biggs NL., 1971, B LOND MATH SOC, V3, P155, DOI DOI 10.1112/BLMS/3.2.155
[3]  
Brouwer A., 1989, DISTANCE REGULAR GRA, P214
[4]   Serniregular automorphisms of vertex-transitive cubic graphs [J].
Cameron, P ;
Sheehan, J ;
Spiga, P .
EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (06) :924-930
[5]  
Cameron P., 1997, DISCRETE MATH, V167, P605
[6]   Transitive permutation groups without semiregular subgroups [J].
Cameron, PJ ;
Giudici, M ;
Jones, GA ;
Kantor, WM ;
Klin, MH ;
Marusic, D ;
Nowitz, LA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :325-333
[7]   Semiregular automorphisms of vertex-transitive graphs of certain valencies [J].
Dobson, Edward ;
Malnic, Aleksander ;
Marusic, Dragan ;
Nowitz, Lewis A. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) :371-380
[8]   Minimal normal subgroups of transitive permutation groups of square-free degree [J].
Dobson, Edward ;
Malnic, Aleksander ;
Marusic, Dragan ;
Nowitz, Lewis A. .
DISCRETE MATHEMATICS, 2007, 307 (3-5) :373-385
[9]  
FEIN B, 1981, J REINE ANGEW MATH, V328, P39
[10]   Quasiprimitive groups with no fixed point free elements of prime order [J].
Giudici, M .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :73-84