Quantum current operators .1. Zeros and poles of quantum current operators and the condition of quantum integrability

被引:12
|
作者
Ding, JT [1 ]
Miwa, T [1 ]
机构
[1] KYOTO UNIV,RIMS,KYOTO 60601,JAPAN
关键词
D O I
10.2977/prims/1195145451
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the current realization of the affine quantum groups, a simple comultiplication for the quantum current operators was given by Drinfeld. With this comultiplication, we study the zeros and poles of the quantum current operators and present a condition of integrability on the quantum current operators of U-q(<(sl)over cap>(2)), which is a deformation of the corresponding condition for <(sl)over cap>(2). We also present the results about the zeros and poles of the quantum current operators of U-q(<(sl)over cap>(n)).
引用
收藏
页码:277 / 284
页数:8
相关论文
共 50 条
  • [21] Quantum equilibrium and the role of operators as observables in quantum theory
    Dürr, D
    Goldstein, S
    Zanghi, N
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 959 - 1055
  • [22] QUANTUM NONLINEAR SCHRODINGER-EQUATION .1. INTERTWINING-OPERATORS
    GUTKIN, E
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1986, 3 (04): : 285 - 314
  • [23] Integrability and action operators in quantum Hamiltonian systems -: art. no. 056202
    Stepanov, VV
    Müller, G
    PHYSICAL REVIEW E, 2001, 63 (05): : 562021 - 562029
  • [24] SYMBOLS OF OPERATORS AND QUANTUM EVOLUTION
    BORSARI, I
    GRAFFI, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) : 4439 - 4450
  • [25] Timelines and Quantum Time Operators
    Moyer, Curt A.
    FOUNDATIONS OF PHYSICS, 2015, 45 (04) : 382 - 403
  • [26] Quantum Sugawara operators in type A
    Jing, Naihuan
    Liu, Ming
    Molev, Alexander
    ADVANCES IN MATHEMATICS, 2024, 456
  • [27] Quantum Gates and Hamilton Operators
    Willi-Hans Steeb
    Yorick Hardy
    International Journal of Theoretical Physics, 2006, 45 : 924 - 932
  • [28] ON ROTATION OPERATORS IN QUANTUM MECHANICS
    BOUTEN, M
    PHYSICA, 1969, 42 (04): : 572 - &
  • [29] A quantum approach to Laplace operators
    Accardi, Luigi
    Barhoumi, Abdessatar
    Ouerdiane, Habib
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2006, 9 (02) : 215 - 248
  • [30] Time operators for quantum walks
    Daiju Funakawa
    Yasumichi Matsuzawa
    Itaru Sasaki
    Akito Suzuki
    Noriaki Teranishi
    Letters in Mathematical Physics, 2020, 110 : 2471 - 2490