Soliton solutions for quasilinear Schrodinger equations, II

被引:538
作者
Liu, JQ
Wang, YQ
Wang, ZQ [1 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] Peking Univ, Dept Math, Beijing 100871, Peoples R China
关键词
standing waves; quasilinear Schrodinger equations; orlicz spaces; minimax methods;
D O I
10.1016/S0022-0396(02)00064-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of quasilinear Schrodinger equations, we establish the existence of ground states of soliton-type solutions by a variational method. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:473 / 493
页数:21
相关论文
共 34 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1993, TOPOL METHOD NONL AN, DOI DOI 10.12775/TMNA.1993.012
[3]  
[Anonymous], TOPOL METHODS NONLIN
[4]   Critical points for multiple integrals of the calculus of variations [J].
Arcoya, D ;
Boccardo, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 134 (03) :249-274
[5]   Some remarks on critical point theory for nondifferentiable functionals [J].
Arcoya, David ;
Boccardo, Lucio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (01) :79-100
[6]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[7]   NONLINEAR ELECTROMAGNETIC-SPIN WAVES [J].
BASS, FG ;
NASONOV, NN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 189 (04) :165-223
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]  
Borovskii A. V., 1993, Journal of Experimental and Theoretical Physics, V77, P562
[10]   RELATIVISTIC AND PONDEROMOTIVE SELF-FOCUSING OF A LASER-BEAM IN A RADIALLY INHOMOGENEOUS-PLASMA .1. PARAXIAL APPROXIMATION [J].
BRANDI, HS ;
MANUS, C ;
MAINFRAY, G ;
LEHNER, T ;
BONNAUD, G .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (10) :3539-3550