Identification of overlapping community structure in complex networks using fuzzy c-means clustering

被引:330
作者
Zhang, Shihua [1 ]
Wang, Rui-Sheng
Zhang, Xiang-Sun
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Renmin Univ, Sch Informat, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
overlapping community structure; modular function; spectral mapping; fuzzy c-means clustering; complex network;
D O I
10.1016/j.physa.2006.07.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Identification of (overlapping) communities/clusters in a complex network is a general problem in data mining of network data sets. In this paper, we devise a novel algorithm to identify overlapping communities in complex networks by the combination of a new modularity function based on generalizing NG's Q function, an approximation mapping of network nodes into Euclidean space and fuzzy c-means clustering. Experimental results indicate that the new algorithm is efficient at detecting both good clusterings and the appropriate number of clusters. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:483 / 490
页数:8
相关论文
共 50 条
  • [31] DETERMINISTIC AND SIMULATED ANNEALING APPROACH TO FUZZY C-MEANS CLUSTERING
    Yasuda, Makoto
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (12B): : 4981 - 4991
  • [32] Background Removal by Modified Fuzzy C-Means Clustering Algorithm
    Pugazhenthi, A.
    Sreenivasulu, G.
    Indhirani, A.
    2015 IEEE INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (ICETECH), 2015, : 104 - 106
  • [33] A novel validity indice for fuzzy C-means clustering algorithm
    Li, Jing
    Qian, Xuezhong
    Journal of Computational Information Systems, 2013, 9 (23): : 9679 - 9688
  • [34] Fuzzy C-Means Clustering Algorithm with Multiple Fuzzification Coefficients
    Tran Dinh Khang
    Nguyen Duc Vuong
    Tran, Manh-Kien
    Fowler, Michael
    ALGORITHMS, 2020, 13 (07)
  • [35] Integrated Warehouse Layout Planning with Fuzzy C-Means Clustering
    Kucukdeniz, Tarik
    Sönmez, Özlen Erkal
    INTELLIGENT AND FUZZY SYSTEMS: DIGITAL ACCELERATION AND THE NEW NORMAL, INFUS 2022, VOL 1, 2022, 504 : 184 - 191
  • [36] Indoor Fingerprint Localization Based on Fuzzy C-means Clustering
    Zhou, Hao
    Nguyen Ngoc Van
    2014 SIXTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA), 2014, : 337 - 340
  • [37] Fuzzy C-means clustering algorithm with multiple fuzzification coefficients
    Khang T.D.
    Vuong N.D.
    Tran M.-K.
    Fowler M.
    Algorithms, 2020, 13 (13)
  • [38] An Evolutionary Neuro-Fuzzy C-means Clustering Technique
    Pantula, Priyanka D.
    Miriyala, Srinivas S.
    Mitra, Kishalay
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 89 (89)
  • [39] Generalization rules for the suppressed fuzzy c-means clustering algorithm
    Szilagyi, Laszlo
    Szilagyi, Sandor M.
    NEUROCOMPUTING, 2014, 139 : 298 - 309
  • [40] A New Image Enhancement Based on the Fuzzy C-Means Clustering
    Liu, Yucheng
    Liu, Yubin
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (3B): : 1 - 4