Identification of overlapping community structure in complex networks using fuzzy c-means clustering

被引:330
作者
Zhang, Shihua [1 ]
Wang, Rui-Sheng
Zhang, Xiang-Sun
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Renmin Univ, Sch Informat, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
overlapping community structure; modular function; spectral mapping; fuzzy c-means clustering; complex network;
D O I
10.1016/j.physa.2006.07.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Identification of (overlapping) communities/clusters in a complex network is a general problem in data mining of network data sets. In this paper, we devise a novel algorithm to identify overlapping communities in complex networks by the combination of a new modularity function based on generalizing NG's Q function, an approximation mapping of network nodes into Euclidean space and fuzzy c-means clustering. Experimental results indicate that the new algorithm is efficient at detecting both good clusterings and the appropriate number of clusters. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:483 / 490
页数:8
相关论文
共 50 条
  • [21] Interval Fuzzy C-means Approach for Incomplete Data Clustering Based on Neural Networks
    Zhang, Li
    Pan, Hui
    Wang, Beilei
    Zhang, Liyong
    Fu, Zhangjie
    JOURNAL OF INTERNET TECHNOLOGY, 2018, 19 (04): : 1089 - 1098
  • [22] Using Fuzzy C-Means Clustering to Determine First Arrival of Microseismic Recordings
    Zhao, Xiangyun
    Chen, Haihang
    Li, Binhong
    Yang, Zhen
    Li, Huailiang
    SENSORS, 2024, 24 (05)
  • [23] Identification of community structure in complex networks using affinity propagation clustering method
    Lai, Darong
    Lu, Hongtao
    MODERN PHYSICS LETTERS B, 2008, 22 (16): : 1547 - 1566
  • [24] Fuzzy C-means clustering with hesitant fuzzy linguistic preference relation
    Zhou, Xueling
    Sun, Lei
    Wei, Cuiping
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11495 - 11514
  • [25] Association of IoT Devices Using Fuzzy C-Means Clustering and Apriori Algorithms
    Kim, Haesik
    2022 IEEE 19TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2022), 2022, : 27 - 32
  • [26] Mining similar radiology reports using BoW and Fuzzy C-means clustering
    Turkeli, Serkan
    Gazioglu, Bilge S. Akkoca
    Kurt, Kenan Kaan
    Atay, Huseyin Tanzer
    Gorur, Yakup
    2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP), 2017,
  • [27] Moving Object Segmentation Using Fuzzy C-Means Clustering Affine Parameters
    Bhandari, Vivek
    Kapuriy, B. R.
    Kuber, M. M.
    COMPUTER NETWORKS AND INTELLIGENT COMPUTING, 2011, 157 : 205 - +
  • [28] An Improved Fast Training Algorithm for RBF Networks Using Symmetry-Based Fuzzy C-Means Clustering
    Aik, Lim Eng
    Zainuddin, Zarita
    MATEMATIKA, 2008, 24 (02) : 141 - 148
  • [29] Generalized Fuzzy c-Means Clustering and Its Theoretical Properties
    Kanzawa, Yuchi
    Miyamoto, Sadaaki
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2018), 2018, 11144 : 243 - 254
  • [30] Geometrically guided Fuzzy C-Means clustering of multispectral images
    Noordam, JC
    van der Broek, WHAM
    Buydens, LMC
    MULTISPECTRAL AND HYPERSPECTRAL IMAGE ACQUISITION AND PROCESSING, 2001, 4548 : 161 - 166