Identification of overlapping community structure in complex networks using fuzzy c-means clustering

被引:330
作者
Zhang, Shihua [1 ]
Wang, Rui-Sheng
Zhang, Xiang-Sun
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Renmin Univ, Sch Informat, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
overlapping community structure; modular function; spectral mapping; fuzzy c-means clustering; complex network;
D O I
10.1016/j.physa.2006.07.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Identification of (overlapping) communities/clusters in a complex network is a general problem in data mining of network data sets. In this paper, we devise a novel algorithm to identify overlapping communities in complex networks by the combination of a new modularity function based on generalizing NG's Q function, an approximation mapping of network nodes into Euclidean space and fuzzy c-means clustering. Experimental results indicate that the new algorithm is efficient at detecting both good clusterings and the appropriate number of clusters. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:483 / 490
页数:8
相关论文
共 50 条
  • [1] On Tolerant Fuzzy c-Means Clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2009, 13 (04) : 421 - 428
  • [2] Model order reduction using Fuzzy C-Means clustering
    Narain, Anirudha
    Chandra, Dinesh
    Singh, Ravindra K.
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2014, 36 (08) : 992 - 998
  • [3] Fuzzy C-Means Clustering Using Asymmetric Loss Function
    Atiyah, Israa Abdzaid
    Mohammadpour, Adel
    Ahmadzadehgoli, Narges
    Taheri, S. Mahmoud
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2020, 19 (01): : 91 - 101
  • [4] Fuzzy C-Means Clustering Using Asymmetric Loss Function
    Israa Abdzaid Atiyah
    Adel Mohammadpour
    Narges Ahmadzadehgoli
    S. Mahmoud Taheri
    Journal of Statistical Theory and Applications, 2020, 19 : 91 - 101
  • [5] Novel approach for issues identification in transboundary water management using fuzzy c-means clustering
    Subash Prasad Rai
    Nayan Sharma
    Anil Kumar Lohani
    Applied Water Science, 2019, 9
  • [6] Novel approach for issues identification in transboundary water management using fuzzy c-means clustering
    Rai, Subash Prasad
    Sharma, Nayan
    Lohani, Anil Kumar
    APPLIED WATER SCIENCE, 2019, 9 (01)
  • [7] P2P Traffic Identification and Optimization Using Fuzzy C-means Clustering
    Liu, Duo
    Lung, Chung-Horng
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 2245 - 2252
  • [8] A coincidental correctness test case identification framework with fuzzy C-means clustering
    Heling Cao
    Lei Li
    Yonghe Chu
    Miaolei Deng
    Panpan Wang
    Chenyang Zhao
    Multimedia Systems, 2023, 29 : 1089 - 1101
  • [9] A coincidental correctness test case identification framework with fuzzy C-means clustering
    Cao, Heling
    Li, Lei
    Chu, Yonghe
    Deng, Miaolei
    Wang, Panpan
    Zhao, Chenyang
    MULTIMEDIA SYSTEMS, 2023, 29 (03) : 1089 - 1101
  • [10] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    SOFT COMPUTING, 2010, 14 (05) : 487 - 494