Gas Transport Properties of Asymmetric Block Copolyimide Membranes

被引:8
作者
Kashimura, Yumi [1 ]
Aoyama, Satoshi [1 ]
Kawakami, Hiroyoshi [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Appl Chem, Hachioji, Tokyo 1920397, Japan
关键词
Asymmetric Membrane; Block Copolymer; Gas Transport; Dry-Wet Phase Inversion; Skin Layer; SURFACE SKIN LAYER; WET PHASE INVERSION; POLYIMIDE MEMBRANE; PERMEATION PROPERTIES; AROMATIC POLYIMIDES; SEPARATION; PERMEABILITY; COPOLYMERS; POLYSULFONE; SELECTIVITY;
D O I
10.1295/polymj.PJ2009108
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We have synthesized fluorinated block copolyimides with different block chain lengths by chemical imidization in a two-pot procedure and prepared the asymmetric coployimide membranes using the dry-wet phase inversion process. The gas transport properties of the asymmetric membranes were measured using a high vacuum apparatus equipped with a Baratron absolute pressure gauge at 76 cmHg and 35 degrees C. We demonstrated that the skin layer thicknesses and the gas transport properties of the asymmetric membranes depended on the copolyimide structures. The phase separation in the block copolyimide solution instantaneously occurred so that the skin layer of the asymmetric block copolyimide membrane became thinner than that of the asymmetric random copolyimide membrane and the gas permeance of the asymmetric block copolyimide membrane had a high value. The apparent skin layer thickness of the asymmetric block coployimide membrane was 230 nm. The asymmetric copolyimide membrane indicated an O-2 permeance of 2.7 x 10(-4) [cm(3) (STP) /(cm(2) sec cmHg)] (270 [GPU]) and an O-2/N-2 selectivity of 4.3.
引用
收藏
页码:961 / 967
页数:7
相关论文
共 50 条
  • [31] Gas transport properties of thermally rearranged (TR) polybenzoxazole-silica hybrid membranes
    Suzuki, Tomoyuki
    POLYMER, 2021, 214
  • [32] Gas transport properties of LiA type zeolite-filled poly(trimethylsilylpropyne) membranes
    Malakhov, A. O.
    Knyazeva, E. E.
    Novitsky, E. G.
    PETROLEUM CHEMISTRY, 2015, 55 (09) : 708 - 715
  • [33] Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes
    Salimi, Mahmoud
    Pirouzfar, Vahid
    Kianfar, Ehsan
    COLLOID AND POLYMER SCIENCE, 2017, 295 (01) : 215 - 226
  • [34] Preparation and gas transport properties of dense fluoroaniline copolymer membranes
    Huang, Kuan-Yeh
    Shiu, Chang-Lung
    Su, Yu-An
    Yang, Chia-Chi
    Yeh, Jui-Ming
    Wei, Yen
    Lee, Kueir-Rarn
    JOURNAL OF MEMBRANE SCIENCE, 2009, 339 (1-2) : 171 - 176
  • [35] GAS-TRANSPORT THROUGH HOMOGENEOUS AND ASYMMETRIC POLYESTERCARBONATE MEMBRANES
    PINNAU, I
    HELLUMS, MW
    KOROS, WJ
    POLYMER, 1991, 32 (14) : 2612 - 2617
  • [36] Effect of Air Gap on Gas Permeance/Selectivity Performance of BTDA-TDI/MDI CoPolyimide Hollow Fiber Membranes
    Favvas, Evangelos P.
    Papageorgiou, Sergios K.
    Nolan, John W.
    Stefanopoulos, Konstantinos L.
    Mitropoulos, Athanasios Ch.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 130 (06) : 4490 - 4499
  • [37] Tailor the gas transport properties of network polyimide membranes via crosslinking center structure variation
    Deng, Guoxiong
    Luo, Jiangzhou
    Liu, Xiangyun
    Zhang, Xibo
    Wang, Yilei
    Zong, Xueping
    Xue, Song
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 282
  • [38] Gas transport in coextruded multilayered membranes with alternating dense and porous polymeric layers
    Offord, Grant T.
    Armstrong, Shannon R.
    Freeman, Benny D.
    Baer, Eric
    Hiltner, Anne
    Paul, Donald R.
    POLYMER, 2014, 55 (05) : 1259 - 1266
  • [39] Aminoethylaminopropylisobutyl POSS-Polyimide nanocomposite membranes and their gas transport properties
    Dasgupta, Barnali
    Sen, Suman Kumar
    Banerjee, Susanta
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2010, 168 (1-3): : 30 - 35
  • [40] Effect of Temperature on Gas Transport Properties of Supported Ionic Liquid Membranes
    Akhmetshina, A. I.
    Yanbikov, N. R.
    Petukhov, A. N.
    Vorotyntsev, I. V.
    PETROLEUM CHEMISTRY, 2017, 57 (09) : 770 - 778