Hopf bifurcation analysis for a dissipative system with asymmetric interaction: Analytical explanation of a specific property of highway traffic

被引:6
作者
Nomura, Yasuyuki [1 ]
Saito, Satoshi [2 ]
Ishiwata, Ryosuke [3 ]
Sugiyama, Yuki [3 ]
机构
[1] Fukui Coll, Natl Inst Technol, Dept Elect & Informat Engn, Sabae 9168507, Japan
[2] Nagoya Univ, Grad Sch Informat Sci, Dept Informat Engn, Nagoya, Aichi 4648601, Japan
[3] Nagoya Univ, Grad Sch Informat Sci, Dept Complex Syst Sci, Nagoya, Aichi 4648601, Japan
来源
PHYSICAL REVIEW E | 2016年 / 93卷 / 01期
关键词
DYNAMICAL MODEL; PHYSICS;
D O I
10.1103/PhysRevE.93.012215
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A dissipative system with asymmetric interaction, the optimal velocity model, shows a Hopf bifurcation concerned with the transition from a homogeneous motion to the formation of a moving cluster, such as the emergence of a traffic jam. We investigate the properties of Hopf bifurcation depending on the particle density, using the dynamical system for the traveling cluster solution of the continuum system derived from the original discrete system of particles. The Hopf bifurcation is revealed as a subcritical one, and the property explains well the specific phenomena in highway traffic: the metastability of jamming transition and the hysteresis effect in the relation of car density and flow rate.
引用
收藏
页数:12
相关论文
共 19 条
  • [1] [Anonymous], 1994, Japan Journal of Industrial and Applied Mathematics, DOI DOI 10.1007/BF03167222
  • [2] DYNAMICAL MODEL OF TRAFFIC CONGESTION AND NUMERICAL-SIMULATION
    BANDO, M
    HASEBE, K
    NAKAYAMA, A
    SHIBATA, A
    SUGIYAMA, Y
    [J]. PHYSICAL REVIEW E, 1995, 51 (02): : 1035 - 1042
  • [3] BANDO M, 1995, J PHYS I, V5, P1389, DOI 10.1051/jp1:1995206
  • [4] Statistical physics of vehicular traffic and some related systems
    Chowdhury, D
    Santen, L
    Schadschneider, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (4-6): : 199 - 329
  • [5] Fukui M., 2003, Traffic and Granular Flow'01
  • [6] Bifurcation analysis of a class of 'car following' traffic models
    Gasser, I
    Sirito, G
    Werner, B
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 197 (3-4) : 222 - 241
  • [7] Traffic and related self-driven many-particle systems
    Helbing, D
    [J]. REVIEWS OF MODERN PHYSICS, 2001, 73 (04) : 1067 - 1141
  • [8] Helbing D., 2000, Traffic and Granular Flow'99: Social, Traffic and Granular Dynamics
  • [9] Hirsch M. W., 1974, DIFF EQUAT, P248
  • [10] Igarashi Y, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.047102