Existence of multi-bump solutions for a class of quasilinear problems

被引:1
作者
Alves, Claudianor O. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat & Estatist, BR-58109970 Campina Grande, Paraiba, Brazil
关键词
variational methods; quasilinear problems; behavior of solutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using variational methods we establish existence of multi-bump solutions for the following class of quasilinear problems -Delta(p)u + (lambda V(x) + Z(x))u(p-1) = f (u), u > 0 in R-N where Delta(p)u is the p-Laplacian operator, 2 <= p < N, lambda is an element of (0, infinity), f is a continuous function with subcritical growth and V, Z : R-N --> R are continuous functions verifying some hypothesis.
引用
收藏
页码:491 / 509
页数:19
相关论文
共 16 条
[1]  
Alves CO, 2005, ADV NONLINEAR STUD, V5, P551
[2]  
ALVES CO, EXISTENCE MULTIPLICI
[3]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[4]   Multiple positive solutions for a nonlinear Schrodinger equation [J].
Bartsch, T ;
Wang, ZQ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03) :366-384
[5]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[6]   Positive solutions of a Schrodinger equation with critical nonlinearity [J].
Clapp, M ;
Ding, YH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (04) :592-605
[7]  
deFigueiredo DG, 2002, DISCRETE CONT DYN-A, V8, P563
[8]   Local mountain passes for semilinear elliptic problems in unbounded domains [J].
delPino, M ;
Felmer, PL .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (02) :121-137
[9]   Multiplicity of positive solutions of a nonlinear Schrodinger equation [J].
Ding, YH ;
Tanaka, K .
MANUSCRIPTA MATHEMATICA, 2003, 112 (01) :109-135
[10]   Existence of multi-bump solutions for nonlinear Schrodinger equations via variational method [J].
Gui, CF .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (5-6) :787-820