Physical modeling of HZO-based ferroelectric field-effect transistors with a WOx channel

被引:3
|
作者
Wen, Xin [1 ]
Halter, Mattia [1 ,2 ]
Begon-Lours, Laura [2 ]
Luisier, Mathieu [1 ]
机构
[1] Integrated Syst Lab, Dept Elect Engn & Informat Technol, Zurich, Switzerland
[2] IBM Res GmbH, Zurich Res Lab, Ruschlikon, Switzerland
来源
基金
欧盟地平线“2020”;
关键词
HZO; FeFET; TCAD; ferroelectric modeling; device simulation;
D O I
10.3389/fnano.2022.900592
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The quasistatic and transient transfer characteristics of Hf0.57Zr0.43O2 (HZO)-based ferroelectric field-effect transistors (FeFETs) with a WO x channel are investigated using a 2-D time-dependent Ginzburg-Landau model as implemented in a state-of-the-art technology computer aided design tool. Starting from an existing FeFET configuration, the influence of different design parameters and geometries is analyzed before providing guidelines for next-generation devices with an increased "high (R-H ) to low (R-L )" resistance ratio, i.e., R-H /R-L . The suitability of FeFETs as solid-state synapses in memristive crossbar arrays depends on this parameter. Simulations predict that a 13 times larger R-H /R-L ratio can be achieved in a double-gate FeFET, as compared to a back-gated one with the same channel geometry and ferroelectric layer. The observed improvement can be attributed to the enhanced electrostatic control over the semiconducting channel thanks to the addition of a second gate. A similar effect is obtained by thinning either the HZO dielectric or the WOx channel. These findings could pave the way for FeFETs with enhanced synaptic-like properties that play a key role in future neuromorphic computing applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Stress-Memorized HZO for High-Performance Ferroelectric Field-Effect Memtransistor
    Tsai, Shih-Hao
    Fang, Zihang
    Wang, Xinghua
    Chand, Umesh
    Chen, Chun-Kuei
    Hooda, Sonu
    Sivan, Maheswari
    Pan, Jieming
    Zamburg, Evgeny
    Thean, Aaron Voon-Yew
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (04) : 1642 - 1650
  • [42] MODELING THE CHANNEL-LENGTH MODULATION COEFFICIENT FOR JUNCTION FIELD-EFFECT TRANSISTORS
    WONG, WW
    LIOU, JJ
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1992, 72 (04) : 533 - 540
  • [43] Compact Modeling of Channel-Resistance Effects in Reconfigurable Field-Effect Transistors
    Roemer, Christian
    Darbandy, Ghader
    Schwarz, Mike
    Trommer, Jens
    Simon, Maik
    Heinzig, Andre
    Mikolajick, Thomas
    Weber, Walter M.
    Iniguez, Benjamin
    Kloes, Alexander
    2022 29TH INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM (MIXDES 2022), 2022, : 33 - 39
  • [44] Switching Kinetics in Nanoscale Hafnium Oxide Based Ferroelectric Field-Effect Transistors
    Mulaosmanovic, Halid
    Ocker, Johannes
    Mueller, Stefan
    Schroeder, Uwe
    Mueller, Johannes
    Polakowski, Patrick
    Flachowsky, Stefan
    van Bentum, Ralf
    Mikolajick, Thomas
    Slesazeck, Stefan
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) : 3792 - 3798
  • [45] Probabilistic-Bits Based on Ferroelectric Field-Effect Transistors for Probabilistic Computing
    Luo, Sheng
    He, Yihan
    Cai, Baofang
    Gong, Xiao
    Liang, Gengchiau
    IEEE ELECTRON DEVICE LETTERS, 2023, 44 (08) : 1356 - 1359
  • [46] Influence of antiferroelectric-like behavior on tuning properties of ferroelectric HZO-based varactors
    Abdulazhanov, Sukhrob
    Lederer, Maximilian
    Lehninger, David
    Ali, Tarek
    Emara, Jennifer
    Olivo, Ricardo
    Kaempfe, Thomas
    MRS ADVANCES, 2021, 6 (21) : 530 - 534
  • [47] The physical chemistry of organic field-effect transistors
    Katz, HE
    Bao, Z
    JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (04): : 671 - 678
  • [48] Thermoregulation System for Biosensors Based on Field-Effect Transistors with a Nanowire Channel
    Nibudin, G. V.
    Tsiniaikin, I. I.
    Presnova, G. V.
    Rubtsova, M. Yu.
    Popov, A. A.
    Mikhailov, P. O.
    Trifonov, A. S.
    Snigirev, O. V.
    Krupenin, V. A.
    Presnov, D. E.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2024, 79 (01) : 82 - 90
  • [49] Thermoregulation System for Biosensors Based on Field-Effect Transistors with a Nanowire Channel
    G. V. Nibudin
    I. I. Tsiniaikin
    G. V. Presnova
    M. Yu. Rubtsova
    A. A. Popov
    P. O. Mikhailov
    A. S. Trifonov
    O. V. Snigirev
    V. A. Krupenin
    D. E. Presnov
    Moscow University Physics Bulletin, 2024, 79 : 82 - 90
  • [50] Modeling of Vibrating-Body Field-Effect Transistors Based on the Electromechanical Interactions Between the Gate and the Channel
    Ueki, Shinji
    Nishimori, Yuki
    Imamoto, Hiroshi
    Kubota, Tomohiro
    Kakushima, Kuniyuki
    Ikehara, Tsuyoshi
    Sugiyama, Masakazu
    Samukawa, Seiji
    Hashiguchi, Gen
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (08) : 2235 - 2242