Automorphisms and domination numbers of transformation graphs over vector spaces

被引:5
作者
Wang, Xinlei [1 ]
Wong, Dein [1 ]
Sun, Dongqin [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou, Jiangsu, Peoples R China
关键词
Automorphisms of graphs; domination number; graphs and linear algebra; ZERO-DIVISOR GRAPH; SUBSPACE INCLUSION GRAPH; SYMPLECTIC GRAPHS; ORTHOGONAL GRAPHS; SUBCONSTITUENTS;
D O I
10.1080/03081087.2018.1452890
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q be a finite field of q elements, V-0 an n-dimensional vector space over F-q and T-0 the set of all linear transformations of V-0. Let V = V-0 \ {0} and let T be the subset of T-0 consisting of all irreversible nonzero linear transformations on V-0. The transformation graph of V-0, written as Gamma(V), is a bipartite graph, whose vertex set V is partitioned into two colouring sets as V = T boolean OR V and there is an undirected edge between A is an element of T and v is an element of V if and only if A maps v to the zero vector, that is A(v) = 0. In this paper, the domination number and the automorphisms of Gamma(V) are determined.
引用
收藏
页码:1350 / 1363
页数:14
相关论文
共 33 条
[21]   Roman Domination and Double Roman Domination Numbers of Sierpinski Graphs S(Kn, t) [J].
Liu, Chia-An .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) :4043-4058
[22]   Domination numbers of the complete grid graphs Pk x Pn [J].
Saoud, Mahmoud .
ACTA SCIENTIARUM-TECHNOLOGY, 2012, 34 (03) :321-324
[23]   Weakly convex and convex domination numbers of some products of graphs [J].
Kucienska, Agata ;
Lemanska, Magdalena ;
Raczek, Joanna .
ARS COMBINATORIA, 2016, 124 :409-420
[24]   On domination numbers of zero-divisor graphs of commutative rings [J].
Anderson, Sarah E. ;
Axtell, Michael C. ;
Kroschel, Brenda K. ;
Stickles, Joe A. .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2024, 12 (02) :169-180
[25]   The genus of graphs associated with vector spaces [J].
Chelvam, T. Tamizh ;
Ananthi, K. Prabha .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (05)
[26]   Unitary Cayley graphs whose Roman domination numbers are at most four [J].
Chin, A. Y. M. ;
Maimani, H. R. ;
Pournaki, M. R. ;
Sivagami, M. ;
Tamizh Chelvam, T. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (01) :36-40
[27]   Domination and independence numbers of large 2-crossing-critical graphs [J].
Irsic, Vesna ;
Lekse, Marusa ;
Paenik, Mihael ;
Podlogar, Petra ;
Praeek, Martin .
ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (04)
[28]   On graphs whose domination number is equal to chromatic and dominator chromatic numbers [J].
Kalarkop, David A. ;
Kaemawichanurat, Pawaton ;
Rangarajan, Raghavachar .
RAIRO-OPERATIONS RESEARCH, 2025, 59 (02) :1141-1152
[29]   Domination Numbers of Inverse Fuzzy Graphs with Application in Decision-Making Problems [J].
Almallah, R. ;
Borzooei, R. A. ;
Jun, Y. B. .
NEW MATHEMATICS AND NATURAL COMPUTATION, 2022, 18 (01) :19-42
[30]   UNICYCLIC GRAPHS WITH STRONG EQUALITY BETWEEN THE 2-RAINBOW DOMINATION AND INDEPENDENT 2-RAINBOW DOMINATION NUMBERS [J].
Amjadi, J. ;
Chellali, M. ;
Falahat, M. ;
Sheikholeslami, S. M. .
TRANSACTIONS ON COMBINATORICS, 2015, 4 (02) :1-11