Automorphisms and domination numbers of transformation graphs over vector spaces

被引:5
|
作者
Wang, Xinlei [1 ]
Wong, Dein [1 ]
Sun, Dongqin [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou, Jiangsu, Peoples R China
关键词
Automorphisms of graphs; domination number; graphs and linear algebra; ZERO-DIVISOR GRAPH; SUBSPACE INCLUSION GRAPH; SYMPLECTIC GRAPHS; ORTHOGONAL GRAPHS; SUBCONSTITUENTS;
D O I
10.1080/03081087.2018.1452890
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q be a finite field of q elements, V-0 an n-dimensional vector space over F-q and T-0 the set of all linear transformations of V-0. Let V = V-0 \ {0} and let T be the subset of T-0 consisting of all irreversible nonzero linear transformations on V-0. The transformation graph of V-0, written as Gamma(V), is a bipartite graph, whose vertex set V is partitioned into two colouring sets as V = T boolean OR V and there is an undirected edge between A is an element of T and v is an element of V if and only if A maps v to the zero vector, that is A(v) = 0. In this paper, the domination number and the automorphisms of Gamma(V) are determined.
引用
收藏
页码:1350 / 1363
页数:14
相关论文
共 32 条
  • [1] Domination Numbers and Automorphisms of Dual Graphs Over Vector Spaces
    Wang, Long
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 689 - 701
  • [2] Domination Numbers and Automorphisms of Dual Graphs Over Vector Spaces
    Long Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 689 - 701
  • [3] Automorphisms of linear functional graphs over vector spaces
    Majidinya, Ali
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20) : 5681 - 5697
  • [4] Graphs with equal domination and independent domination numbers
    Gupta, Purnima
    Singh, Rajesh
    Arumugam, S.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (02) : 691 - 696
  • [5] On rainbow domination numbers of graphs
    Shao, Zehui
    Liang, Meilian
    Yin, Chuang
    Xu, Xiaodong
    Pavlic, Polona
    Zerovnik, Janez
    INFORMATION SCIENCES, 2014, 254 : 225 - 234
  • [6] Domination subdivision numbers in graphs
    Favaron, O
    Haynes, TW
    Hedetniemi, ST
    UTILITAS MATHEMATICA, 2004, 66 : 195 - 209
  • [7] Characterization of graphs with equal domination and connected domination numbers
    Chen, XG
    Sun, L
    Xing, HM
    DISCRETE MATHEMATICS, 2004, 289 (1-3) : 129 - 135
  • [8] Note on domination and minus domination numbers in cubic graphs
    Chen, YJ
    Cheng, TCE
    Ng, CT
    Shan, EF
    APPLIED MATHEMATICS LETTERS, 2005, 18 (09) : 1062 - 1067
  • [9] A note on domination and independence-domination numbers of graphs
    Milanic, Martin
    ARS MATHEMATICA CONTEMPORANEA, 2013, 6 (01) : 89 - 97
  • [10] Minus domination numbers of directed graphs
    Li, Wensheng
    Xing, Huaming
    MANUFACTURING SYSTEMS AND INDUSTRY APPLICATIONS, 2011, 267 : 334 - 337