Global Existence and Aggregation in a Keller-Segel Model with Fokker-Planck Diffusion

被引:124
|
作者
Yoon, Changwook [1 ]
Kim, Yong-Jung [2 ,3 ]
机构
[1] Yonsei Univ, Ctr Math Anal & Computat, Seoul 03722, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, 70 Yuseong Daero, Daejeon 305811, South Korea
[3] Natl Inst Math Sci, 70 Yuseong Daero, Daejeon 305811, South Korea
基金
新加坡国家研究基金会;
关键词
Keller-Segel equations; Cell aggregation; Chemotaxis; Pattern formation; Fokker-Planck type diffusion; PARABOLIC CHEMOTAXIS SYSTEM; SEMILINEAR NEUMANN PROBLEM; LEAST-ENERGY SOLUTIONS; SINGULAR SENSITIVITY; BLOW-UP; BOUNDEDNESS;
D O I
10.1007/s10440-016-0089-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global existence and the instability of constant steady states are obtained together for a Keller-Segel type chemotactic aggregation model. Organisms are assumed to change their motility depending only on the chemical density but not on its gradient. However, the resulting model is closely related to the logarithmic model, u(t) = Delta(gamma(v)u) = del. (gamma(v))). u(t)=epsilon Delta v-v+u, where is the motility function. The global existence is shown for all chemosensitivity constant with a smallness assumption on . On the other hand constant steady states are shown to be unstable only if and is small. Furthermore, the threshold diffusivity is found that, if , any constant steady state is unstable and an aggregation pattern appears. Numerical simulations are given for radial cases.
引用
收藏
页码:101 / 123
页数:23
相关论文
共 50 条
  • [31] Instability in a generalized Keller-Segel model
    De Leenheer, Patrick
    Gopalakrishnan, Jay
    Zuhr, Erica
    JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) : 974 - 991
  • [32] Global Boundedness in a Logarithmic Keller-Segel System
    Liu, Jinyang
    Tian, Boping
    Wang, Deqi
    Tang, Jiaxin
    Wu, Yujin
    MATHEMATICS, 2023, 11 (12)
  • [33] Local and global existence of solutions of a Keller-Segel model coupled to the incompressible fluid equations
    Bae, Hantaek
    Kang, Kyungkeun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 333 : 407 - 435
  • [35] The stability of the Keller-Segel model
    Solis, FJ
    Cortés, JC
    Cardenas, OJ
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (9-10) : 973 - 979
  • [36] ERROR ESTIMATES OF THE AGGREGATION -DIFFUSION SPLITTING ALGORITHMS FOR THE KELLER-SEGEL EQUATIONS
    Huang, Hui
    Liu, Jian-Guo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (10): : 3463 - 3478
  • [37] On global existence and blowup of solutions of Stochastic Keller-Segel type equation
    Misiats, Oleksandr
    Stanzhytskyi, Oleksandr
    Topaloglu, Ihsan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (01):
  • [38] Global and exponential attractor of the repulsive Keller-Segel model with logarithmic sensitivity
    Chen, Lin
    Kong, Fanze
    Wang, Qi
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (04) : 599 - 617
  • [39] Global existence of solutions for a nonlinearly perturbed Keller-Segel system in R2
    Kurokiba, Masaki
    Ogawa, Takayoshi
    Takahashi, Futoshi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (05): : 840 - 867
  • [40] Boundedness for a Fully Parabolic Keller-Segel Model with Sublinear Segregation and Superlinear Aggregation
    Frassu, Silvia
    Viglialoro, Giuseppe
    ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)