Italian domination in the Cartesian product of paths

被引:4
作者
Gao, Hong [1 ]
Feng, Tingting [1 ]
Yang, Yuansheng [2 ]
机构
[1] Dalian Maritime Univ, Coll Sci, Dalian 116026, Peoples R China
[2] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Italian domination; Cartesian product of graphs; Path;
D O I
10.1007/s10878-020-00694-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In a graph G = (V, E), each vertex v is an element of V is assigned 0, 1 or 2 such that each vertex assigned 0 is adjacent to at least one vertex assigned 2 or two vertices assigned 1. Such an assignment is called an Italian dominating function (IDF) of G. The weight of an IDF f is w( f) = Sigma(v is an element of V) f (v). The Italian domination number of G is gamma(I) (G) = min(f) w(f). In this paper, we investigate the Italian domination number of the Cartesian product of paths, P-n square P-m. We obtain the exact values of gamma(I) (P-n square P-2) and gamma(I) (P-n square P-3). Also, we present a bound of gamma(I) (P-n square P-m) for m >= 4, that is mn/3 + m+n-4/9 <= gamma(I) (P-n square P-m) <= mn+2m+2n-8/3 where the lower bound is improved since the general lower bound is mn/3 presented by Chellali et al. (Discrete Appl Math 204:22-28, 2016). By the results of this paper, together with existing results, we give P-n square P-2 and P-n square P-3 are examples for which gamma(I) = gamma(r2) where gamma(r2) is the 2-rainbow domination number. This can partially solve the open problem presented by Bresar et al. (Discrete Appl Math 155:2394-2400, 2007). Finally, Vizing's conjecture on Italian domination in P-n square P-m is checked.
引用
收藏
页码:526 / 543
页数:18
相关论文
共 16 条
  • [1] The k-rainbow reinforcement numbers in graphs
    Amjadi, J.
    Asgharsharghi, L.
    Dehgardi, N.
    Furuya, M.
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 217 : 394 - 404
  • [2] Bresar B, 2008, TAIWAN J MATH, V12, P213
  • [3] On the 2-rainbow domination in graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) : 2394 - 2400
  • [4] Roman {2}-domination
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    McRae, Alice A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 204 : 22 - 28
  • [5] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    [J]. DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [6] Outer-Independent Italian Domination in Graphs
    Fan, Wenjie
    Ye, Ansheng
    Miao, Fang
    Shao, Zehui
    Samodivkin, Vladimir
    Sheikholeslami, Seyed Mahmoud
    [J]. IEEE ACCESS, 2019, 7 : 22756 - 22762
  • [7] More Results on Italian Domination in Cn□Cm
    Gao, Hong
    Wang, Penghui
    Liu, Enmao
    Yang, Yuansheng
    [J]. MATHEMATICS, 2020, 8 (04)
  • [8] Bagging Approach for Italian Domination in Cn□Pm
    Gao, Hong
    Xu, Tingting
    Yang, Yuansheng
    [J]. IEEE ACCESS, 2019, 7 : 105224 - 105234
  • [9] Global italian domination in graphs
    Hao, Guoliang
    Hu, Kangxiu
    Wei, Shouliu
    Xu, Zhijun
    [J]. QUAESTIONES MATHEMATICAE, 2019, 42 (08) : 1101 - 1115
  • [10] Perfect Italian domination in trees
    Haynes, Teresa W.
    Henning, Michael A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 260 : 164 - 177