Collision Avoidance in Pedestrian-Rich Environments With Deep Reinforcement Learning

被引:110
|
作者
Everett, Michael [1 ]
Chen, Yu Fan [2 ]
How, Jonathan P. [3 ]
机构
[1] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[2] Facebook Real Labs, Redmond, WA 98052 USA
[3] MIT, Aeronaut & Astronaut, Cambridge, MA 02139 USA
关键词
Collision avoidance; Robots; Reinforcement learning; Vehicle dynamics; Robot sensing systems; Heuristic algorithms; Dynamics; deep reinforcement learning; motion planning; multiagent systems; decentralized execution;
D O I
10.1109/ACCESS.2021.3050338
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Collision avoidance algorithms are essential for safe and efficient robot operation among pedestrians. This work proposes using deep reinforcement (RL) learning as a framework to model the complex interactions and cooperation with nearby, decision-making agents, such as pedestrians and other robots. Existing RL-based works assume homogeneity of agent properties, use specific motion models over short timescales, or lack a principled method to handle a large, possibly varying number of agents. Therefore, this work develops an algorithm that learns collision avoidance among a variety of heterogeneous, non-communicating, dynamic agents without assuming they follow any particular behavior rules. It extends our previous work by introducing a strategy using Long Short-Term Memory (LSTM) that enables the algorithm to use observations of an arbitrary number of other agents, instead of a small, fixed number of neighbors. The proposed algorithm is shown to outperform a classical collision avoidance algorithm, another deep RL-based algorithm, and scales with the number of agents better (fewer collisions, shorter time to goal) than our previously published learning-based approach. Analysis of the LSTM provides insights into how observations of nearby agents affect the hidden state and quantifies the performance impact of various agent ordering heuristics. The learned policy generalizes to several applications beyond the training scenarios: formation control (arrangement into letters), demonstrations on a fleet of four multirotors and on a fully autonomous robotic vehicle capable of traveling at human walking speed among pedestrians.
引用
收藏
页码:10357 / 10377
页数:21
相关论文
共 50 条
  • [31] Deep reinforcement learning based collision avoidance system for autonomous ships
    Wang, Yong
    Xu, Haixiang
    Feng, Hui
    He, Jianhua
    Yang, Haojie
    Li, Fen
    Yang, Zhen
    OCEAN ENGINEERING, 2024, 292
  • [32] Path Planning of Mobile Robot in Dynamic Obstacle Avoidance Environment Based on Deep Reinforcement Learning
    Zhang, Qingfeng
    Ma, Wenpeng
    Zheng, Qingchun
    Zhai, Xiaofan
    Zhang, Wenqian
    Zhang, Tianchang
    Wang, Shuo
    IEEE ACCESS, 2024, 12 : 189136 - 189152
  • [33] Vision-guided Collision Avoidance through Deep Reinforcement Learning
    Song, Sirui
    Zhang, Yuanhang
    Qin, Xi
    Saunders, Kirk
    Liu, Jundong
    PROCEEDINGS OF THE 2021 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2021, : 191 - 194
  • [34] Using Collision Momentum in Deep Reinforcement Learning based Adversarial Pedestrian Modeling
    Chen, Dianwei
    Yurtsever, Ekim
    Redmill, Keith A.
    Ozguner, Umit
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [35] Learning obstacle avoidance and predation in complex reef environments with deep reinforcement learning
    Hou, Ji
    He, Changling
    Li, Tao
    Zhang, Chunze
    Zhou, Qin
    BIOINSPIRATION & BIOMIMETICS, 2024, 19 (05)
  • [36] Multi-robot Target Encirclement Control with Collision Avoidance via Deep Reinforcement Learning
    Ma, Junchong
    Lu, Huimin
    Xiao, Junhao
    Zeng, Zhiwen
    Zheng, Zhiqiang
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2020, 99 (02) : 371 - 386
  • [37] Automatic ship collision avoidance using deep reinforcement learning with LSTM in continuous action spaces
    Ryohei Sawada
    Keiji Sato
    Takahiro Majima
    Journal of Marine Science and Technology, 2021, 26 : 509 - 524
  • [38] CONTROL METHOD FOR PATH FOLLOWING AND COLLISION AVOIDANCE OF AUTONOMOUS SHIP BASED ON DEEP REINFORCEMENT LEARNING
    Zhao, Luman
    Roh, Myung-Il
    Lee, Sung-Jun
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2019, 27 (04): : 293 - 310
  • [39] Multi-robot Target Encirclement Control with Collision Avoidance via Deep Reinforcement Learning
    Junchong Ma
    Huimin Lu
    Junhao Xiao
    Zhiwen Zeng
    Zhiqiang Zheng
    Journal of Intelligent & Robotic Systems, 2020, 99 : 371 - 386
  • [40] Toward Observation Based Least Restrictive Collision Avoidance Using Deep Meta Reinforcement Learning
    Asayesh, Salar
    Chen, Mo
    Mehrandezh, Mehran
    Gupta, Kamal
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04): : 7445 - 7452