Collision Avoidance in Pedestrian-Rich Environments With Deep Reinforcement Learning

被引:110
|
作者
Everett, Michael [1 ]
Chen, Yu Fan [2 ]
How, Jonathan P. [3 ]
机构
[1] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[2] Facebook Real Labs, Redmond, WA 98052 USA
[3] MIT, Aeronaut & Astronaut, Cambridge, MA 02139 USA
关键词
Collision avoidance; Robots; Reinforcement learning; Vehicle dynamics; Robot sensing systems; Heuristic algorithms; Dynamics; deep reinforcement learning; motion planning; multiagent systems; decentralized execution;
D O I
10.1109/ACCESS.2021.3050338
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Collision avoidance algorithms are essential for safe and efficient robot operation among pedestrians. This work proposes using deep reinforcement (RL) learning as a framework to model the complex interactions and cooperation with nearby, decision-making agents, such as pedestrians and other robots. Existing RL-based works assume homogeneity of agent properties, use specific motion models over short timescales, or lack a principled method to handle a large, possibly varying number of agents. Therefore, this work develops an algorithm that learns collision avoidance among a variety of heterogeneous, non-communicating, dynamic agents without assuming they follow any particular behavior rules. It extends our previous work by introducing a strategy using Long Short-Term Memory (LSTM) that enables the algorithm to use observations of an arbitrary number of other agents, instead of a small, fixed number of neighbors. The proposed algorithm is shown to outperform a classical collision avoidance algorithm, another deep RL-based algorithm, and scales with the number of agents better (fewer collisions, shorter time to goal) than our previously published learning-based approach. Analysis of the LSTM provides insights into how observations of nearby agents affect the hidden state and quantifies the performance impact of various agent ordering heuristics. The learned policy generalizes to several applications beyond the training scenarios: formation control (arrangement into letters), demonstrations on a fleet of four multirotors and on a fully autonomous robotic vehicle capable of traveling at human walking speed among pedestrians.
引用
收藏
页码:10357 / 10377
页数:21
相关论文
共 50 条
  • [21] COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle Using Deep Reinforcement Learning
    Meyer, Eivind
    Heiberg, Amalie
    Rasheed, Adil
    San, Omer
    IEEE ACCESS, 2020, 8 (08): : 165344 - 165364
  • [22] Sim-to-Real Learning-Based Nonlinear MPC for UAV Navigation and Collision Avoidance in Unknown Cluttered Environments
    Doukhi, Oualid
    Lee, Deok-Jin
    IEEE ACCESS, 2025, 13 : 46249 - 46262
  • [23] Taming an Autonomous Surface Vehicle for Path Following and Collision Avoidance Using Deep Reinforcement Learning
    Meyer, Eivind
    Robinson, Haakon
    Rasheed, Adil
    San, Omer
    IEEE ACCESS, 2020, 8 : 41466 - 41481
  • [24] Formation Control with Collision Avoidance through Deep Reinforcement Learning
    Sui, Zezhi
    Pu, Zhiqiang
    Yi, Jianqiang
    Xiong, Tianyi
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [25] Deep Reinforcement Learning Based Collision Avoidance Algorithm for Differential Drive Robot
    Lu, Xinglong
    Cao, Yiwen
    Zhao, Zhonghua
    Yan, Yilin
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2018), PT I, 2018, 10984 : 186 - 198
  • [26] Deep reinforcement learning with predictive auxiliary task for autonomous train collision avoidance
    Plissonneau, Antoine
    Jourdan, Luca
    Trentesaux, Damien
    Abdi, Lotfi
    Sallak, Mohamed
    Bekrar, Abdelghani
    Quost, Benjamin
    Schoen, Walter
    JOURNAL OF RAIL TRANSPORT PLANNING & MANAGEMENT, 2024, 31
  • [27] Collision Avoidance Among Dense Heterogeneous Agents Using Deep Reinforcement Learning
    Zhu, Kai
    Li, Bin
    Zhe, Wenming
    Zhang, Tao
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (01) : 57 - 64
  • [28] A Deep Reinforcement Learning Method for Collision Avoidance with Dense Speed-Constrained Multi-UAV
    Han, Jiale
    Zhu, Yi
    Yang, Jian
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (03): : 2152 - 2159
  • [29] Deep Reinforcement Learning With Multiple Unrelated Rewards for AGV Mapless Navigation
    Cai, Boliang
    Wei, Changyun
    Ji, Ze
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, : 4323 - 4340
  • [30] A COLREGs-Compliant Collision Avoidance Decision Approach Based on Deep Reinforcement Learning
    Wang, Weiqiang
    Huang, Liwen
    Liu, Kezhong
    Wu, Xiaolie
    Wang, Jingyao
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (07)