Collision Avoidance in Pedestrian-Rich Environments With Deep Reinforcement Learning

被引:110
|
作者
Everett, Michael [1 ]
Chen, Yu Fan [2 ]
How, Jonathan P. [3 ]
机构
[1] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[2] Facebook Real Labs, Redmond, WA 98052 USA
[3] MIT, Aeronaut & Astronaut, Cambridge, MA 02139 USA
关键词
Collision avoidance; Robots; Reinforcement learning; Vehicle dynamics; Robot sensing systems; Heuristic algorithms; Dynamics; deep reinforcement learning; motion planning; multiagent systems; decentralized execution;
D O I
10.1109/ACCESS.2021.3050338
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Collision avoidance algorithms are essential for safe and efficient robot operation among pedestrians. This work proposes using deep reinforcement (RL) learning as a framework to model the complex interactions and cooperation with nearby, decision-making agents, such as pedestrians and other robots. Existing RL-based works assume homogeneity of agent properties, use specific motion models over short timescales, or lack a principled method to handle a large, possibly varying number of agents. Therefore, this work develops an algorithm that learns collision avoidance among a variety of heterogeneous, non-communicating, dynamic agents without assuming they follow any particular behavior rules. It extends our previous work by introducing a strategy using Long Short-Term Memory (LSTM) that enables the algorithm to use observations of an arbitrary number of other agents, instead of a small, fixed number of neighbors. The proposed algorithm is shown to outperform a classical collision avoidance algorithm, another deep RL-based algorithm, and scales with the number of agents better (fewer collisions, shorter time to goal) than our previously published learning-based approach. Analysis of the LSTM provides insights into how observations of nearby agents affect the hidden state and quantifies the performance impact of various agent ordering heuristics. The learned policy generalizes to several applications beyond the training scenarios: formation control (arrangement into letters), demonstrations on a fleet of four multirotors and on a fully autonomous robotic vehicle capable of traveling at human walking speed among pedestrians.
引用
收藏
页码:10357 / 10377
页数:21
相关论文
共 50 条
  • [1] Pedestrian Collision Avoidance Using Deep Reinforcement Learning
    Rafiei, Alireza
    Fasakhodi, Amirhossein Oliaei
    Hajati, Farshid
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2022, 23 (03) : 613 - 622
  • [2] Pedestrian Collision Avoidance Using Deep Reinforcement Learning
    Alireza Rafiei
    Amirhossein Oliaei Fasakhodi
    Farshid Hajati
    International Journal of Automotive Technology, 2022, 23 : 613 - 622
  • [3] Online Trajectory Planning with Reinforcement Learning for Pedestrian Avoidance
    Feher, Arpad
    Aradi, Szilard
    Becsi, Tamas
    ELECTRONICS, 2022, 11 (15)
  • [4] A Collision Avoidance Method Based on Deep Reinforcement Learning
    Feng, Shumin
    Sebastian, Bijo
    Ben-Tzvi, Pinhas
    ROBOTICS, 2021, 10 (02)
  • [5] Deep reinforcement learning for pedestrian collision avoidance and human-machine cooperative driving
    Li, Junxiang
    Yao, Liang
    Xu, Xin
    Cheng, Bang
    Ren, Junkai
    INFORMATION SCIENCES, 2020, 532 : 110 - 124
  • [6] Bio-Inspired Collision Avoidance in Swarm Systems via Deep Reinforcement Learning
    Na, Seongin
    Niu, Hanlin
    Lennox, Barry
    Arvin, Farshad
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (03) : 2511 - 2526
  • [7] Deep-Reinforcement-Learning-Based Collision Avoidance in UAV Environment
    Ouahouah, Sihem
    Bagaa, Miloud
    Prados-Garzon, Jonathan
    Taleb, Tarik
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (06) : 4015 - 4030
  • [8] A learning method for AUV collision avoidance through deep reinforcement learning
    Xu, Jian
    Huang, Fei
    Wu, Di
    Cui, Yunfei
    Yan, Zheping
    Du, Xue
    OCEAN ENGINEERING, 2022, 260
  • [9] DEEP REINFORCEMENT LEARNING FOR SHIP COLLISION AVOIDANCE AND PATH TRACKING
    Singht, Amar Nath
    Vijayakumar, Akash
    Balasubramaniyam, Shankruth
    Somayajula, Abhilash
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 5B, 2024,
  • [10] Ship Collision Avoidance Using Constrained Deep Reinforcement Learning
    Zhang, Rui
    Wang, Xiao
    Liu, Kezhong
    Wu, Xiaolie
    Lu, Tianyou
    Chao Zhaohui
    2018 5TH INTERNATIONAL CONFERENCE ON BEHAVIORAL, ECONOMIC, AND SOCIO-CULTURAL COMPUTING (BESC), 2018, : 115 - 120