Sparse hierarchical solvers with guaranteed convergence

被引:8
作者
Yang, Kai [1 ]
Pouransari, Hadi [1 ,2 ]
Darve, Eric [1 ,2 ]
机构
[1] Stanford Univ, Sch Engn, Dept Mech Engn, Bldg 520,452 Escondido Mall, Stanford, CA 94305 USA
[2] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
关键词
elimination; hierarchical; low-rank; robust preconditioner; sparse; FAST MULTIPOLE METHOD; INTEGRAL-EQUATIONS; PRECONDITIONERS; MATRICES; APPROXIMATION; DECOMPOSITION; FACTORIZATION; ALGORITHM; OPERATORS;
D O I
10.1002/nme.6166
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solving sparse linear systems from discretized partial differential equations is challenging. Direct solvers have, in many cases, quadratic complexity (depending on geometry), while iterative solvers require problem dependent preconditioners to be robust and efficient. Approximate factorization preconditioners such as incomplete LU factorization provide cheap approximations to the system matrix. However, even a highly accurate preconditioner may have deteriorating performance when the condition number of the system matrix increases. By increasing the accuracy on low-frequency errors, we propose a novel hierarchical solver with improved robustness with respect to the condition number of the linear system. This solver retains the linear computational cost and memory footprint of the original algorithm.
引用
收藏
页码:964 / 986
页数:23
相关论文
共 53 条
[1]  
Ambikasaran S., 2014, ARXIV14071572
[2]  
Ambikasaran S, 2013, J SCI COMPUT, V57, P477, DOI 10.1007/s10915-013-9714-z
[3]   A fast, memory efficient and robust sparse preconditioner based on a multifrontal approach with applications to finite-element matrices [J].
Aminfar, AmirHossein ;
Darve, Eric .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (06) :520-540
[4]   A fast block low-rank dense solver with applications to finite-element matrices [J].
Aminfar, AmirHossein ;
Ambikasaran, Sivaram ;
Darve, Eric .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 304 :170-188
[5]  
[Anonymous], 1999, LAPACK USERS GUIDE
[6]  
[Anonymous], 2000, MULTIGRID
[7]  
[Anonymous], 2008, HIERARCHICAL MATRICE
[8]   ON THE SPECTRAL EQUIVALENCE OF HIERARCHICAL MATRIX PRECONDITIONERS FOR ELLIPTIC PROBLEMS [J].
Bebendorf, M. ;
Bollhoefer, M. ;
Bratsch, M. .
MATHEMATICS OF COMPUTATION, 2016, 85 (302) :2839-2861
[9]   Hierarchical matrix approximation with blockwise constraints [J].
Bebendorf, M. ;
Bollhoefer, M. ;
Bratsch, M. .
BIT NUMERICAL MATHEMATICS, 2013, 53 (02) :311-339
[10]   Why finite element discretizations can be factored by triangular hierarchical matrices [J].
Bebendorf, Mario .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) :1472-1494