Improved Approximate Multipliers for Single-Precision Floating-Point Hardware Design

被引:2
作者
da Costa, Patricia [1 ]
Pereira, Pedro T. L. [1 ]
Abreu, Brunno A. [1 ]
Paim, Guilherme [1 ]
da Costa, Eduardo [2 ]
Bampi, Sergio [1 ]
机构
[1] Fed Univ Rio Grande do Sul UFRGS, Grad Program Microelect PGMicro, Porto Alegre, RS, Brazil
[2] Catholic Univ Pelotas UCPel, Grad Program Elect Engn & Comp, Pelotas, RS, Brazil
来源
2022 IEEE 13TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS AND SYSTEMS (LASCAS) | 2022年
关键词
Approximate Multipliers; Floating-Point; LMS;
D O I
10.1109/LASCAS53948.2022.9789077
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reveals that state-of-the-art integer approximate multipliers (AxMs) present dispensable blocks when specifically embedded within a floating-point (FP) architecture. This paper proposes and implements arithmetic simplifications that significantly improve four state-of-the-art AxMs for FP. The results for 32-bit FP (FP-32) show that our improved 24-bit integer AxMs (i.e., specific for FP) reduce area from about 4.2x up to 12.9x in four different AxMs when compared with the original 24-bit AxM generic integer multiplier. We also perform an AxC design space exploration (DSE) of FP-32 Least Mean Squares Adaptive Filters (LMS-AF) architectures employing the four improved AxM proposals. We present quality-energy and -area DSE trade-offs in an approximate FP-32 LMS-AF kernel, in terms of Pareto fronts, showing that we can still maintain a fully functional harmonics elimination. Pareto front total energy reduction ranges from 43.4% (1.27x) to 70.3% (3.37x) w.r.t. the precise multiplier.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 9 条
[1]   On the Use of Approximate Multipliers in LMS Adaptive Filters [J].
Esposito, Darjn ;
Di Meo, Gennaro ;
De Caro, Davide ;
Petra, Nicola ;
Napoli, Ettore ;
Strollo, Antonio G. M. .
2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
[2]   LoBA: A Leading One Bit Based Imprecise Multiplier for Efficient Image Processing [J].
Garg, Bharat ;
Patel, Sujit Kumar ;
Dutt, Sunil .
JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2020, 36 (03) :429-437
[3]  
Hashemi S, 2015, ICCAD-IEEE ACM INT, P418, DOI 10.1109/ICCAD.2015.7372600
[4]  
Pereira P.M., 2021, 2021 TEL C CONFTELE, P1
[5]  
ROSA M, 2021, 34 S INTEGRATED CIRC, V1, P1, DOI DOI 10.1109/TCSII.2012.2231037
[6]  
Schlogl A., 2008, BCI Competition 2008-Graz Data Set B
[7]   TOSAM: An Energy-Efficient Truncation- and Rounding-Based Scalable Approximate Multiplier [J].
Vahdat, Shaghayegh ;
Kamal, Mehdi ;
Afzali-Kusha, Ali ;
Pedram, Massoud .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2019, 27 (05) :1161-1173
[8]   RoBA Multiplier: A Rounding-Based Approximate Multiplier for High-Speed yet Energy-Efficient Digital Signal Processing [J].
Zendegani, Reza ;
Kamal, Mehdi ;
Bahadori, Milad ;
Afzali-Kusha, Ali ;
Pedram, Massoud .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2017, 25 (02) :393-401
[9]   Approximate Computing for ML: State-of-the-art, Challenges and Visions [J].
Zervakis, Georgios ;
Saadat, Hassaan ;
Amrouch, Hussam ;
Gerstlauer, Andreas ;
Parameswaran, Sri ;
Henkel, Joerg .
2021 26TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2021, :189-196