Influences of 3D PET scanner components on increased scatter evaluated by a Monte Carlo simulation

被引:10
作者
Hirano, Yoshiyuki [1 ,2 ]
Koshino, Kazuhiro [1 ]
Iida, Hidehiro [1 ]
机构
[1] Natl Cerebral & Cardiovasc Ctr Res Inst, Dept Biomed Imaging, 5-7-1 Fujishiro Dai, Suita, Osaka 5658565, Japan
[2] Gunma Univ, Heavy Ion Med Ctr, 3-39-22 Showa Machi, Maebashi, Gunma 3718511, Japan
关键词
3D-PET; scatter; Monte Carlo simulation; scatter fraction; NEMA-NU; 2007; VALIDATION; PLATFORM;
D O I
10.1088/1361-6560/aa6644
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Monte Carlo simulation is widely applied to evaluate the performance of three-dimensional positron emission tomography (3D-PET). For accurate scatter simulations, all components that generate scatter need to be taken into account. The aim of this work was to identify the components that influence scatter. The simulated geometries of a PET scanner were: a precisely reproduced configuration including all of the components; a configuration with the bed, the tunnel and shields; a configuration with the bed and shields; and the simplest geometry with only the bed. We measured and simulated the scatter fraction using two different set-ups: (1) as prescribed by NEMA-NU 2007 and (2) a similar set-up but with a shorter line source, so that all activity was contained only inside the field-of-view (FOV), in order to reduce influences of components outside the FOV. The scatter fractions for the two experimental set-ups were, respectively, 45% and 38%. Regarding the geometrical configurations, the former two configurations gave simulation results in good agreement with the experimental results, but simulation results of the simplest geometry were significantly different at the edge of the FOV. From the simulation of the precise configuration, the object (scatter phantom) was the source of more than 90% of the scatter. This was also confirmed by visualization of photon trajectories. Then, the bed and the tunnel were mainly the sources of the rest of the scatter. From the simulation results, we concluded that the precise construction was not needed; the shields, the tunnel, the bed and the object were sufficient for accurate scatter simulations.
引用
收藏
页码:4017 / 4030
页数:14
相关论文
共 26 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
Akkurt H, 2007, 2001714 TN ORNLTM
[3]   Recent developments in GEANT4 [J].
Allison, J. ;
Amako, K. ;
Apostolakis, J. ;
Arce, P. ;
Asai, M. ;
Aso, T. ;
Bagli, E. ;
Bagulya, A. ;
Banerjee, S. ;
Barrand, G. ;
Beck, B. R. ;
Bogdanov, A. G. ;
Brandt, D. ;
Brown, J. M. C. ;
Burkhardt, H. ;
Canal, Ph. ;
Cano-Ott, D. ;
Chauvie, S. ;
Cho, K. ;
Cirrone, G. A. P. ;
Cooperman, G. ;
Cortes-Giraldo, M. A. ;
Cosmo, G. ;
Cuttone, G. ;
Depaola, G. ;
Desorgher, L. ;
Dong, X. ;
Dotti, A. ;
Elvira, V. D. ;
Folger, G. ;
Francis, Z. ;
Galoyan, A. ;
Garnier, L. ;
Gayer, M. ;
Genser, K. L. ;
Grichine, V. M. ;
Guatelli, S. ;
Gueye, P. ;
Gumplinger, P. ;
Howard, A. S. ;
Hrivnacova, I. ;
Hwang, S. ;
Incerti, S. ;
Ivanchenko, A. ;
Ivanchenko, V. N. ;
Jones, F. W. ;
Jun, S. Y. ;
Kaitaniemi, P. ;
Karakatsanis, N. ;
Karamitrosi, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 :186-225
[4]   Monte Carlo simulation and scatter correction of the GE advance PET scanner with SimSET and geant4 [J].
Barret, O ;
Carpenter, TA ;
Clark, JC ;
Ansorge, RE ;
Fryer, TD .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (20) :4823-4840
[5]   NEMA NU 4-2008 validation and applications of the PET-SORTEO Monte Carlo simulations platform for the geometry of the Inveon PET preclinical scanner [J].
Boisson, F. ;
Wimberley, C. J. ;
Lehnert, W. ;
Zahra, D. ;
Pham, T. ;
Perkins, G. ;
Hamze, H. ;
Gregoire, M-C ;
Reilhac, A. .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (19) :6749-6763
[6]   Unified description and validation of Monte Carlo simulators in PET [J].
Buvat, I ;
Castiglioni, I ;
Feuardent, J ;
Gilardi, MC .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (02) :329-346
[7]   Validation of a small-animal PET simulation using GAMOS: a GEANT4-based framework [J].
Canadas, M. ;
Arce, P. ;
Rato Mendes, P. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (01) :273-288
[8]   Scatter correction techniques in 3D PET: A Monte Carlo evaluation [J].
Castiglioni, I ;
Cremonesi, O ;
Gilardi, MC ;
Bettinardi, V ;
Rizzo, G ;
Savi, A ;
Bellotti, E ;
Fazio, F .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1999, 46 (06) :2053-2058
[9]  
Daube-Witherspoon ME, 2002, J NUCL MED, V43, P1398
[10]   GPU-accelerated Monte Carlo based scatter correction in brain PET/MR [J].
Michaela Gaens ;
Julien Bert ;
Uwe Pietrzyk ;
A Autret ;
N Jon Shah ;
Dimitris Visvikis .
EJNMMI Physics, 1 (Suppl 1)