Lipophilicity in drug design: an overview of lipophilicity descriptors in 3D-QSAR studies

被引:46
作者
Ginex, Tiziana [1 ,2 ]
Vazquez, Javier [1 ,2 ,3 ]
Gilbert, Enric [3 ]
Herrero, Enric [3 ]
Luque, Francisco J. [1 ,2 ]
机构
[1] Univ Barcelona, Inst Biomed IBUB, Fac Pharm & Food Sci, Dept Nutr Food Sci & Gastron, Campus Torribera,Av Prat de la Riba 171, E-08921 Santa Coloma De Gramenet, Spain
[2] Univ Barcelona, Inst Theoret & Computat Chem IQTC UB, Campus Torribera,Av Prat de la Riba 171, E-08921 Santa Coloma De Gramenet, Spain
[3] Pharmacelera, Placa Pau Vila 1,Sect 1,Edificio Palau Mar, Barcelona 08039, Spain
关键词
3D-QSAR; continuum solvation models; hydrophobic pharmacophore; lipophilicity; quantum mechanical-derived descriptors; HIGH-THROUGHPUT METHOD; MOLECULAR LIPOPHILICITY; CONTINUUM SOLVATION; FREE-ENERGY; IN-SILICO; LOG P; PHYSICOCHEMICAL PARAMETERS; HYDROPHOBIC SIMILARITY; PARTITION-COEFFICIENTS; WATER-MOLECULES;
D O I
10.4155/fmc-2018-0435
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The pharmacophore concept is a fundamental cornerstone in drug discovery, playing a critical role in determining the success of in silico techniques, such as virtual screening and 3D-QSAR studies. The reliability of these approaches is influenced by the quality of the physicochemical descriptors used to characterize the chemical entities. In this context, a pivotal role is exerted by lipophilicity, which is a major contribution to host-guest interaction and ligand binding affinity. Several approaches have been undertaken to account for the descriptive and predictive capabilities of lipophilicity in 3D-QSAR modeling. Recent efforts encode the use of quantum mechanical-based descriptors derived from continuum solvation models, which open novel avenues for gaining insight into structure-activity relationships studies.
引用
收藏
页码:1177 / 1193
页数:17
相关论文
共 99 条
[21]   COMPARATIVE MOLECULAR-FIELD ANALYSIS (COMFA) .1. EFFECT OF SHAPE ON BINDING OF STEROIDS TO CARRIER PROTEINS [J].
CRAMER, RD ;
PATTERSON, DE ;
BUNCE, JD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1988, 110 (18) :5959-5967
[22]  
Curutchet C, 2001, J COMPUT CHEM, V22, P1180, DOI 10.1002/jcc.1076
[23]  
Davis AM, 1999, ANGEW CHEM INT EDIT, V38, P737, DOI 10.1002/(SICI)1521-3773(19990315)38:6<736::AID-ANIE736>3.0.CO
[24]  
2-R
[25]   Heuristic molecular lipophilicity potential (HMLP): Lipophilicity and hydrophilicity of amino acid side chains [J].
Du, QS ;
Li, DP ;
He, WZ ;
Chou, KC .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (06) :685-692
[26]   Theoretical derivation of heuristic molecular lipophilicity potential: A quantum chemical description for molecular solvation [J].
Du, QS ;
Liu, PJ ;
Mezey, PG .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2005, 45 (02) :347-353
[27]   Molecular lipophilicity in protein modeling and drug design [J].
Efremov, Roman G. ;
Chugunov, Anton O. ;
Pyrkov, Timothy V. ;
Priestle, John P. ;
Arseniev, Alexander S. ;
Jacoby, Edgar .
CURRENT MEDICINAL CHEMISTRY, 2007, 14 (04) :393-415
[28]   A structural biology view of target drugability [J].
Egner, Ursula ;
Hillig, Roman C. .
EXPERT OPINION ON DRUG DISCOVERY, 2008, 3 (04) :391-401
[29]   Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 3. The free energy contribution of structural water molecules in HIV-1 protease complexes [J].
Fornabaio, M ;
Spyrakis, F ;
Mozzarelli, A ;
Cozzini, P ;
Abraham, DJ ;
Kellogg, GE .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (18) :4507-4516
[30]   Extension of the MST continuum solvation model to the RM1 semiempirical Hamiltonian [J].
Forti, Flavio ;
Barril, Xavier ;
Luque, F. Javier ;
Orozco, Modesto .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (04) :578-587