Solutions of a class of Hamiltonian elliptic systems in RN

被引:25
作者
Yang, Minbo [1 ,2 ]
Chen, Wenxiong [2 ]
Ding, Yanheng [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Chinese Acad Sci, AMSS, Inst Math, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational methods; Ground state solution; Superlinear; Critical points; STATIONARY STATES; EXISTENCE; HOMOCLINICS; EQUATIONS; DECAY;
D O I
10.1016/j.jmaa.2009.07.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of ground state solutions for the following elliptic systems in R-N {-Delta u + b . del(x)u + u = H-v (x, u, v), -Delta v - b . del(x)v + v = H-u (x, u, v), where b = (b(1),...,b(N)) is a constant vector and H is an element of C-1(R-N x R-2, R) is nonperiodic in variables x and super-quadratic as vertical bar z vertical bar -> infinity. By a recent critical point theorem for strongly indefinite problem, we obtain the existence of at least one ground state solution. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:338 / 349
页数:12
相关论文
共 25 条
[1]   ON MULTIBUMP BOUND-STATES FOR CERTAIN SEMILINEAR ELLIPTIC-EQUATIONS [J].
ALAMA, S ;
LI, YY .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (04) :983-1026
[2]   On the existence of positive solutions of a perturbed Hamiltonian system in RN [J].
Alves, CO ;
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (02) :673-690
[3]  
[Anonymous], 1990, MATH ANAL NUMERICAL
[4]  
BARBU V, 1995, DISCRETE CONT DYN S, V1, P277
[5]   Homoclinic solutions of an infinite-dimensional Hamiltonian system [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :289-310
[6]   Deformation theorems on non-metrizable vector spaces and applications to critical point theory [J].
Bartsch, Thomas ;
Ding, Yanheng .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (12) :1267-1288
[7]  
Coti-Zelati V, 1991, J AM MATH SOC, V4, P693
[8]   Decay, symmetry and existence of solutions of semilinear elliptic systems [J].
De Figueiredo, DG ;
Yang, JF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (03) :211-234
[9]   Strongly indefinite functionals and multiple solutions of elliptic systems [J].
De Figueiredo, DG ;
Ding, YH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (07) :2973-2989
[10]  
DEFIGUEIREDO DG, 1994, T AM MATH SOC, V343, P99