Vanishing theorems on toric varieties

被引:69
作者
Mustata, M [1 ]
机构
[1] Clay Math Inst, Cambridge, MA 02140 USA
关键词
toric varieties; homogeneous coordinate ring; vanishing theorems; Fujita's Conjecture;
D O I
10.2748/tmj/1113247605
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
we use Cox's description for sheaves on toric varieties and results about local cohomology with respect to monomial ideals to give a characteristic-free approach to vanishing results on toric varieties, As an application, we give a proof of a strong version of Fujita's Conjecture in the case of toric varieties. We also prove that every sheaf on a toric variety corresponds to a module over the homogeneous coordinate ring, generalizing Cox's result for the simplicial case.
引用
收藏
页码:451 / 470
页数:20
相关论文
共 21 条
[1]  
[Anonymous], GRAD TEXTS MATH
[2]  
[Anonymous], 1973, Lecture Notes in Mathematics
[3]   ON THE HODGE STRUCTURE OF PROJECTIVE HYPERSURFACES IN TORIC VARIETIES [J].
BATYREV, VV ;
COX, DA .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) :293-338
[4]   The Frobenius morphism on a toric variety [J].
Buch, A ;
Thomsen, JF ;
Lauritzen, N ;
Mehta, V .
TOHOKU MATHEMATICAL JOURNAL, 1997, 49 (03) :355-366
[5]  
Cox D. A., 1995, J. Algebraic Geom., V4, P17
[6]  
Demazure M., 1970, ANN SCI ECOLE NORM S, V3, P507
[7]  
Di Rocco S, 1999, MATH Z, V231, P169
[8]   SYZYGIES AND KOSZUL COHOMOLOGY OF SMOOTH PROJECTIVE VARIETIES OF ARBITRARY DIMENSION [J].
EIN, L ;
LAZARSFELD, R .
INVENTIONES MATHEMATICAE, 1993, 111 (01) :51-67
[9]   Cohomology on toric varieties and local cohomology with monomial supports [J].
Eisenbud, D ;
Mustata, M ;
Stillman, M .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (4-5) :583-600
[10]  
Eisenbud D., 1995, GRAD TEXTS MATH, V150