Scaled-up Direct-Current Generation in MoS2 Multilayer-Based Moving Heterojunctions

被引:63
作者
Liu, Jun [1 ]
Liu, Feifei [3 ]
Bao, Rima [4 ]
Jiang, Keren [5 ]
Khan, Faheem [5 ]
Li, Zhi [5 ]
Peng, Huihui [3 ]
Chen, James [2 ]
Alodhayb, Abdullah [6 ]
Thundat, Thomas [1 ]
机构
[1] Univ Buffalo State Univ New York, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
[2] Univ Buffalo State Univ New York, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
[3] Jiangxi Univ Sci & Technol, Sch Elect Engn & Automat, Ganzhou 341000, Peoples R China
[4] China Univ Petr, Coll New Energy & Mat, Beijing 102249, Peoples R China
[5] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
[6] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
基金
美国国家科学基金会;
关键词
energy harvesting; triboelectricity; tribo-tunneling; direct-current; heterojunction; MoS2; ATOMIC-LAYER MOS2; TRIBOELECTRIC NANOGENERATORS; ENERGY; PIEZOELECTRICITY; ELECTRIFICATION; CONTACT;
D O I
10.1021/acsami.9b09851
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Techniques for scaling-up the direct-current (dc) triboelectricity generation in MoS2 multilayer-based Schottky nanocontacts are vital for exploiting the nanoscale phenomenon for real-world applications of energy harvesting and sensing. Here, we show that scaling-up the dc output can be realized by using various MoS2 multilayer-based heterojunctions including metal/semiconductor (MS), metal/insulator (tens of nanometers)/semiconductor (MIS), and semiconductor/insulator (a few nanometers)/semiconductor (SIS) moving structures. It is shown that the tribo-excited energetic charge carriers can overcome the interfacial potential barrier by different mechanisms, such as thermionic emission, defect conduction, and quantum tunneling in the case of MS, MIS, and SIS moving structures. By tailoring the interface structure, it is possible to trigger electrical conduction resulting in optimized power output. We also show that the band bending in the surface-charged region of MoS2 determines the direction of the dc power output. Our experimental results show that engineering the interface structure opens up new avenues for developing next-generation semiconductor-based mechanical energy conversion with high performance.
引用
收藏
页码:35404 / 35409
页数:6
相关论文
共 32 条
[1]   Piezoelectric and triboelectric nanogenerators: Trends and impacts [J].
Askari, Hassan ;
Khajepour, Amir ;
Khamesee, Mir Behrad ;
Saadatnia, Zia ;
Wang, Zhong Lin .
NANO TODAY, 2018, 22 :10-13
[2]   Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: A first-principles study [J].
Cai, Haifang ;
Guo, Yufeng ;
Gao, Huajian ;
Guo, Wanlin .
NANO ENERGY, 2019, 56 :33-39
[3]   Scavenging Wind Energy by Triboelectric Nanogenerators [J].
Chen, Bo ;
Yang, Ya ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2018, 8 (10)
[4]   Two-dimensional transition metal dichalcogenide (TMD) nanosheets [J].
Chhowalla, Manish ;
Liu, Zhongfan ;
Zhang, Hua .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (09) :2584-2586
[5]  
CHIU FC, 2014, ADV MATER SCI ENG, V2014, DOI DOI 10.1155/2014/578168
[6]  
Hsizl J., 1979, Solid Surf. Phys, V85, P1, DOI 10.1007/BFb0048919
[7]   Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides [J].
Kim, Changsik ;
Moon, Inyong ;
Lee, Daeyeong ;
Choi, Min Sup ;
Ahmed, Faisal ;
Nam, Seunggeol ;
Cho, Yeonchoo ;
Shin, Hyeon-Jin ;
Park, Seongjun ;
Yoo, Won Jong .
ACS NANO, 2017, 11 (02) :1588-1596
[8]   Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS2 Transistors with Reduction of Metal-Induced Gap States [J].
Kim, Gwang-Sik ;
Kim, Seung-Hwan ;
Park, June ;
Han, Kyu Hyun ;
Kim, Jiyoung ;
Yu, Hyun-Yong .
ACS NANO, 2018, 12 (06) :6292-6300
[9]   Electrochemically driven mechanical energy harvesting [J].
Kim, Sangtae ;
Choi, Soon Ju ;
Zhao, Kejie ;
Yang, Hui ;
Gobbi, Giorgia ;
Zhang, Sulin ;
Li, Ju .
NATURE COMMUNICATIONS, 2016, 7
[10]   Schottky Barrier Height Modulation Using Interface Characteristics of MoS2 Interlayer for Contact Structure [J].
Kim, Seung-Hwan ;
Han, Kyu Hyun ;
Kim, Gwang-Sik ;
Kim, Seung-Geun ;
Kim, Jiyoung ;
Yu, Hyun-Yong .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (06) :6230-6237