Rotating detonation engines with two fuel orifice schemes

被引:20
作者
Wang, Yuhui [1 ]
Le, Jialing [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
[2] China Aerodynam Res & Dev Ctr, Mianyang 621000, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Rotting detonation engine; Fuel orifice; Hydrogen; Surface roughness; High-speed imaging; HYDROGEN; ETHYLENE; COMBUSTION; WAVE;
D O I
10.1016/j.actaastro.2019.05.035
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Hollow combustors without centerbodies are becoming popular for rotating detonation engines. The present experimental study compares detonation and pressure gain performances of hollow combustors with two fuel orifice schemes to choose a better one. Hydrogen and air sources at room temperatures of 280-285 K are used as propellants. The combustors are optically accessible by embedding a piece of quartz glass in the outerbody. The hollow combustor channel here has an outer diameter of 100 mm. Fuel is injected into the combustor from 150 cylindrical orifices in a diameter of 0.8 mm or 90 orifices in a diameter of 2 mm, and air is injected through a circular channel with a throat width of 1 mm. Results show that the hollow combustor with 150 cylindrical orifices in a diameter of 0.8 mm has a better detonation performance and a higher pressure gain performance than the other one. High-speed images show the wall surface roughness affects the RDW strength greatly.
引用
收藏
页码:262 / 275
页数:14
相关论文
共 36 条
[1]   Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities [J].
Anand, Vijay ;
George, Andrew St. ;
de Luzan, Charles Farbos ;
Gutmark, Ephraim .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2018, 92 :314-325
[2]   Continuous spin detonation in annular combustors [J].
Bykovskii, FA ;
Zhdan, SA ;
Vedernikov, EF .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2005, 41 (04) :449-459
[3]  
Chacon F., 20180405 AIAA, P0405, DOI [https://doi.org/10.2514/6.2018-0405, DOI 10.2514/6.2018-0405]
[4]  
Claflin S., 2014, 4 INT S SUP CO2 POW
[5]   Investigation on the propagation process of rotating detonation wave [J].
Deng, Li ;
Ma, Hu ;
Xu, Can ;
Zhou, Changsheng ;
Liu, Xiao .
ACTA ASTRONAUTICA, 2017, 139 :278-287
[6]  
Dunn I.B., 20185251 AIAA, P5251, DOI [https://doi.org/10.2514/6.2018-5251, DOI 10.2514/6.2018-5251]
[7]   Experimental Performance Scaling of Rotating Detonation Engines Operated on Gaseous Fuels [J].
Fotia, Matthew L. ;
Hoke, John ;
Schauer, Fred .
JOURNAL OF PROPULSION AND POWER, 2017, 33 (05) :1187-1196
[8]   Hydrogen-fueled detonation ramjet model: Wind tunnel tests at approach air stream Mach number 5.7 and stagnation temperature 1500 K [J].
Frolov, S. M. ;
Zvegintsev, V. I. ;
Ivanov, V. S. ;
Aksenov, V. S. ;
Shamshin, I. O. ;
Vnuchkov, D. A. ;
Nalivaichenko, D. G. ;
Berlin, A. A. ;
Fomin, V. M. ;
Shiplyuk, A. N. ;
Yakovlev, N. N. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (15) :7515-7524
[9]   Continuous detonation combustion of ternary "hydrogen-liquid propane-air" mixture in annular combustor [J].
Frolov, S. M. ;
Aksenov, V. S. ;
Ivanov, V. S. ;
Shamshin, I. O. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (26) :16808-16820
[10]   Large-scale hydrogen-air continuous detonation combustor [J].
Frolov, S. M. ;
Aksenov, V. S. ;
Lvanov, V. S. ;
Shamshin, I. O. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (03) :1616-1623