A blow-up criterion for compressible viscous heat-conductive flows

被引:95
作者
Fan, Jishan [2 ]
Jiang, Song [1 ]
Ou, Yaobin [1 ]
机构
[1] Inst Appl Phys & Computat Math, LCP, Beijing 100088, Peoples R China
[2] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Peoples R China
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2010年 / 27卷 / 01期
关键词
Blow-up criterion; Strong solutions; Compressible Navier-Stokes equations; Heat-conductive flows; NAVIER-STOKES EQUATIONS; SMOOTH SOLUTIONS; FLUIDS; MOTION;
D O I
10.1016/j.anihpc.2009.09.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an initial boundary value problem for the three-dimensional Navier-Stokes equations of viscous heat-conductive fluids in a bounded smooth domain. We establish a blow-up criterion for the local strong solutions in terms of the temperature and the gradient of velocity only. similar to the Beale-Kato-Majda criterion for ideal incompressible flows. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:337 / 350
页数:14
相关论文
共 19 条
[1]  
[Anonymous], 1980, J MATH KYOTO U
[2]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[3]   Existence results for viscous polytropic fluids with vacuum [J].
Cho, Yonggeun ;
Kim, Hyunseok .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (02) :377-411
[4]   Blow-up criteria for the Navier-Stokes equations of compressible fluids [J].
Fan, Jishan ;
Jiang, Song .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2008, 5 (01) :167-185
[5]  
Feireisl E, 2004, INDIANA U MATH J, V53, P1705
[6]  
Feireisl E., 2004, Dynamics of Viscous Compressible Fluids (Oxford Lecture Series in Mathematics and Its Applications vol 26)
[7]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[8]   Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids [J].
Hoff, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 139 (04) :303-354
[9]   Compressible flow in a half-space with navier boundary conditions [J].
Hoff, D .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (03) :315-338
[10]  
Huang X., 2009, ARXIV09033090V2MATHP