Mesoscale Prediction in the Antarctic Using Cycled Ensemble Data Assimilation

被引:2
作者
Riedel, Christopher P. [1 ]
Cavallo, Steven M. [1 ]
Parsons, David B. [1 ]
机构
[1] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
Antarctica; Data assimilation; Numerical analysis; modeling; NUMERICAL WEATHER PREDICTION; ADAPTIVE COVARIANCE INFLATION; VARIATIONAL DATA ASSIMILATION; GLOBAL POSITIONING SYSTEM; SURFACE MASS-BALANCE; MCMURDO DRY VALLEYS; GRAVITY-WAVE DRAG; SEA-ICE EXTENT; KALMAN FILTER; PART I;
D O I
10.1175/MWR-D-20-0009.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Due in part to sparse conventional observation coverage in the Antarctic region, atmospheric studies in this part of the globe often rely more heavily on numerical models. Model representation of atmospheric processes in the Antarctic remains inferior to representation in the Northern Hemisphere midlatitudes. Poor representation may be related to inaccurate model analyses that do not optimally utilize the limited observation network. Here, the ensemble Kalman filter (EnKF) data assimilation (DA) technique is employed in lieu of variational DA techniques to investigate impacts on model analysis accuracy. This DA technique [provided by the Data Assimilation Research Testbed (DART)] is coupled with a polar-modified, mesoscale numerical model that together compose Antarctic-DART (A-DART). A-DART is cycled with DA and run over a 1-month period, assimilating only conventional observations. Results show relatively good agreement between A-DART and observations. Comparison with radiosonde temperature and geostationary satellite wind observations shows large differences between RMSE and ensemble spread in the upper troposphere. The analysis increment shows large values in the eastern Atlantic-western Indian Oceans associated with geostationary satellite wind observations. Further evaluation determines that geostationary satellite wind observations may be biased in this region. Overall, this baseline demonstration of ensemble-based modeling applied in the Antarctic produced short-term forecasts that were competitive with two operational modeling systems while assimilating on the O(10(6)) fewer observations. A-DART is capable of assimilating additional observations for a variety of applications. This study highlights the capability of applying this ensemble-based DA technique for process and forecast studies in an observation-sparse region.
引用
收藏
页码:443 / 462
页数:20
相关论文
共 135 条
[1]   High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries [J].
Agosta, Cecile ;
Favier, Vincent ;
Krinner, Gerhard ;
Gallee, Hubert ;
Fettweis, Xavier ;
Genthon, Christophe .
CLIMATE DYNAMICS, 2013, 41 (11-12) :3247-3260
[2]   A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part I: Storm-Scale Analyses [J].
Aksoy, Altug ;
Dowell, David C. ;
Snyder, Chris .
MONTHLY WEATHER REVIEW, 2009, 137 (06) :1805-1824
[3]   THE DATA ASSIMILATION RESEARCH TESTBED A Community Facility [J].
Anderson, Jeffrey ;
Hoar, Tim ;
Raeder, Kevin ;
Liu, Hui ;
Collins, Nancy ;
Torn, Ryan ;
Avellano, Avelino .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2009, 90 (09) :1283-1296
[4]   An adaptive covariance inflation error correction algorithm for ensemble filters [J].
Anderson, Jeffrey L. .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2007, 59 (02) :210-224
[5]   Spatially and temporally varying adaptive covariance inflation for ensemble filters [J].
Anderson, Jeffrey L. .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2009, 61 (01) :72-83
[6]  
Anderson JL, 2001, MON WEATHER REV, V129, P2884, DOI 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO
[7]  
2
[8]  
[Anonymous], 2020, NCARUCAREOF
[9]   The COSMIC/FORMOSAT-3 Mission: Early Results [J].
Anthes, R. A. ;
Bernhardt, P. A. ;
Chen, Y. ;
Cucurull, L. ;
Dymond, K. F. ;
Ector, D. ;
Healy, S. B. ;
Ho, S. -P. ;
Hunt, D. C. ;
Kuo, Y. -H. ;
Liu, H. ;
Manning, K. ;
Mccormick, C. ;
Meehan, T. K. ;
Randel, W. J. ;
Rocken, C. ;
Schreiner, W. S. ;
Sokolovskiy, S. V. ;
Syndergaard, S. ;
Thompson, D. C. ;
Trenberth, K. E. ;
Wee, T. -K. ;
Yen, N. L. ;
Zeng, Z. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2008, 89 (03) :313-333
[10]   Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains [J].
Barlage, Michael ;
Chen, Fei ;
Tewari, Mukul ;
Ikeda, Kyoko ;
Gochis, David ;
Dudhia, Jimy ;
Rasmussen, Roy ;
Livneh, Ben ;
Ek, Mike ;
Mitchell, Ken .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115