Positive solutions for some quasilinear equations with critical and supercritical growth

被引:28
作者
Figueiredo, Giovany M.
Furtado, Marcelo F.
机构
[1] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP, Brazil
[2] Fed Univ Para, Dept Matemat, BR-66075110 Belem, Para, Brazil
基金
巴西圣保罗研究基金会;
关键词
positive solutions; critical problems; supercritical problems; Ljusternik-Schnirelmann theory; quasilinear equations; ELLIPTIC PROBLEMS; DOMAIN TOPOLOGY;
D O I
10.1016/j.na.2006.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish results concerning the existence and multiplicity of positive solutions for the problem -div(a(epsilon x) vertical bar del u vertical bar(p-2)del u) + u(p-1) = f(u) + u(p*-1) in R-N, u is an element of W-1,W- p(R-N), where epsilon > 0 is a small parameter, 2 <= p < N, p* = Np/(N - p), a is a positive potential and f is a superlinear function. We obtain the existence of a ground state solution and relate the number of positive solutions with the topology of the set where a attains its minimum. We also prove a multiplicity result for a supercritical version of the above problem. In the proofs we use minimax theorems and Ljusternik-Schnirelmann theory. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1600 / 1616
页数:17
相关论文
共 21 条
[11]  
Lazzo M, 2003, DISCRETE CONT DYN-A, P526
[12]   SOME PROPERTIES OF WEAK SOLUTIONS OF NONLINEAR SCALAR FIELD-EQUATIONS [J].
LI, GB .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1990, 15 (01) :27-36
[13]  
Lions P-L., 1985, Rev. Mat. Iberoam, V1, P145, DOI [10.4171/RMI/6, DOI 10.4171/RMI/6]
[14]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P223
[15]   On a class of semilinear elliptic problems in R-n with critical growth [J].
Miyagaki, OH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (07) :773-781
[16]  
MOSER J, 1960, PURE APPL MATH, V13, P457
[17]  
RABINOWITZ P, 1973, INDIANA U MATH J, V23, P729
[18]  
Silva EADE, 2001, NONLINEAR ANAL-THEOR, V43, P1
[19]  
Talenti G., 1976, Ann. Mat. Pura Appl. (4), V110, P353, DOI [10.1007/BF02418013, DOI 10.1007/BF02418013]