Positive solutions for some quasilinear equations with critical and supercritical growth

被引:28
作者
Figueiredo, Giovany M.
Furtado, Marcelo F.
机构
[1] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP, Brazil
[2] Fed Univ Para, Dept Matemat, BR-66075110 Belem, Para, Brazil
基金
巴西圣保罗研究基金会;
关键词
positive solutions; critical problems; supercritical problems; Ljusternik-Schnirelmann theory; quasilinear equations; ELLIPTIC PROBLEMS; DOMAIN TOPOLOGY;
D O I
10.1016/j.na.2006.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish results concerning the existence and multiplicity of positive solutions for the problem -div(a(epsilon x) vertical bar del u vertical bar(p-2)del u) + u(p-1) = f(u) + u(p*-1) in R-N, u is an element of W-1,W- p(R-N), where epsilon > 0 is a small parameter, 2 <= p < N, p* = Np/(N - p), a is a positive potential and f is a superlinear function. We obtain the existence of a ground state solution and relate the number of positive solutions with the topology of the set where a attains its minimum. We also prove a multiplicity result for a supercritical version of the above problem. In the proofs we use minimax theorems and Ljusternik-Schnirelmann theory. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1600 / 1616
页数:17
相关论文
共 21 条
[1]  
Alves CO, 2002, COMMUN PURE APPL ANA, V1, P417
[2]  
[Anonymous], 2004, Abstr Appl Anal, DOI DOI 10.1155/S1085337504310018
[3]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[4]   THE EFFECT OF THE DOMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :79-93
[5]   MULTIPLE POSITIVE SOLUTIONS OF SOME ELLIPTIC PROBLEMS VIA THE MORSE-THEORY AND THE DOMAIN TOPOLOGY [J].
BENCI, V ;
CERAMI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :29-48
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]  
Chabrowski J., 1996, PORT MATH, V53, P167
[8]  
Chabrowski J., 1997, ADV DIFFER EQU-NY, P231
[9]  
Cingolani S., 1997, TOPOL METHOD NONL AN, V10, P1, DOI DOI 10.12775/TMNA.1997.019
[10]  
FIGUEIREDO GM, IN PRESS J MATH ANAL