New locking-free mixed method for the Reissner mindlin thin plate model

被引:12
作者
Amara, M [1 ]
Capatina-Papaghiuc, D
Chatti, A
机构
[1] Univ Pau, Lab Math Appl, F-64000 Pau, France
[2] Ecole Natl Ingn, LAMSIN, Tunis 2002, Tunisia
关键词
mixed formulation; finite element; error estimates; locking-free;
D O I
10.1137/S0036142901385222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested here in the Reissner-Mindlin model for a bending thin plate with physical boundary conditions. It is well known that this problem depends singularly upon the plate's thickness epsilon. By decomposing the bending moment and by dualizing its symmetry, we obtain an equivalent mixed formulation of the initial problem whose unknowns now belong to classical Sobolev spaces. We then propose a low-order conforming finite element method for which we obtain optimal error estimates independently upon the small parameter. Thus, the discrete method is unconditionally convergent and locking-free. It directly gives an approximation of the bending moment and allows us to recover the two other variables, which are the deflection and the rotation vector.
引用
收藏
页码:1561 / 1582
页数:22
相关论文
共 11 条
[1]  
AMARA M, IN PRESS SIAM J NUME
[2]   A UNIFORMLY ACCURATE FINITE-ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1276-1290
[3]   ON LOCKING AND ROBUSTNESS IN THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (05) :1261-1293
[4]   A negative-norm least squares method for Reissner-Mindlin plates [J].
Bramble, JH ;
Sun, T .
MATHEMATICS OF COMPUTATION, 1998, 67 (223) :901-916
[5]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[6]  
Destuynder P., 1996, MATH ANAL THIN PLATE
[7]  
Falk RS, 2000, MATH COMPUT, V69, P911, DOI 10.1090/S0025-5718-99-01165-5
[8]  
Girault V., 2012, FINITE ELEMENT METHO, V5
[9]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[10]   BOUNDARY-VALUE-PROBLEMS FOR PARTIAL-DIFFERENTIAL EQUATIONS IN NON-SMOOTH DOMAINS [J].
KONDRATEV, VA ;
OLEINIK, OA .
RUSSIAN MATHEMATICAL SURVEYS, 1983, 38 (02) :1-86