Investigation of the evolution of Geometrically Necessary Dislocation (GND) tensor in a type 316 steel by using in-situ EBSD technique

被引:50
作者
Wang, Xiao [1 ]
Zhou, Zhengqing [2 ]
Liu, Sheng [3 ]
Huang, Mingyu [1 ]
机构
[1] Nantong Univ, Sch Mech Engn, Nantong 226019, Peoples R China
[2] Univ Sci & Technol, Sch Civil & Resource Engn, Beijing 100083, Peoples R China
[3] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
316; steel; Microstructure; GND tensor; Electron microscopy; In-situ EBSD; Plastic damage;
D O I
10.1016/j.matlet.2020.129254
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper reports the evolution of GND tensor in 316 austenitic steel at the plastic stage. A significant increase of five GND tensors can be observed. The variations of average values of both positive and negative GND tensors were very symmetric. The largest rise of GND tensor happened at the early plastic stage, while the biggest increase of zero-value point occurred at the later. This result indicates that the rapid accumulation of GND density is a precursor to the defects formation or other material degradation behaviors. Thus, the GND tensors can also be utilized for the degradation analysis of 316 steel. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 15 条
[1]  
BEAUSIR B, 2017, Analysis tools for electron and X-ray diffraction
[2]   Consistent determination of geometrically necessary dislocation density from simulations and experiments [J].
Das, Suchandrima ;
Hofmann, Felix ;
Tarleton, Edmund .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 109 :18-42
[3]   PROPERTIES OF CR-MN AUSTENITIC STAINLESS-STEELS FOR FUSION-REACTOR APPLICATIONS [J].
FENICI, P ;
BOERMAN, D ;
COEN, V ;
LANG, E ;
PONTI, C ;
SCHULE, W .
NUCLEAR ENGINEERING AND DESIGN-FUSION, 1984, 1 (02) :167-183
[4]   Evolution of dislocation density distributions in copper during tensile deformation [J].
Jiang, J. ;
Britton, T. B. ;
Wilkinson, A. J. .
ACTA MATERIALIA, 2013, 61 (19) :7227-7239
[5]   Measurement of geometrically necessary dislocation density with high resolution electron backscatter diffraction: Effects of detector binning and step size [J].
Jiang, J. ;
Britton, T. B. ;
Wilkinson, A. J. .
ULTRAMICROSCOPY, 2013, 125 :1-9
[6]  
Mills WJ, 1997, INT MATER REV, V42, P45, DOI 10.1179/095066097790326010
[7]   Sensitivity of the magnetization curves of different austenitic stainless tube and pipe steels to mechanical fatigue [J].
Niffenegger, M. ;
Leber, H. J. .
JOURNAL OF NUCLEAR MATERIALS, 2008, 377 (02) :325-330
[8]   SOME GEOMETRICAL RELATIONS IN DISLOCATED CRYSTALS [J].
NYE, JF .
ACTA METALLURGICA, 1953, 1 (02) :153-162
[9]   Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction [J].
Pantleon, W. .
SCRIPTA MATERIALIA, 2008, 58 (11) :994-997
[10]   Estimations of bulk geometrically necessary dislocation density using high resolution EBSD [J].
Ruggles, T. J. ;
Fullwood, D. T. .
ULTRAMICROSCOPY, 2013, 133 :8-15