Surface plasmon-polaritons in graphene, embedded into medium with gain and losses

被引:5
作者
Zhernovnykova, O. A. [1 ]
Papava, V [2 ]
Deynychenko, G., V [2 ]
Deynichenko, T., I [1 ]
Bludov, Yu, V [3 ,4 ]
机构
[1] HS Skovoroda Kharkiv Natl Pedag Univ, Dept Math, Alchevskyh Str 29, UA-61002 Kharkov, Ukraine
[2] HS Skovoroda Kharkiv Natl Pedag Univ, Dept Gen Pedag & Higher Sch Pedag, Alchevskyh Str 29, UA-61002 Kharkov, Ukraine
[3] Univ Minho, Dept Phys, Ctr Phys, Campus Gualtar, P-4710057 Braga, Portugal
[4] Univ Minho, QuantaLab, Campus Gualtar, P-4710057 Braga, Portugal
关键词
graphene; surface plasmon-polariton; PT-symmetry; ANTENNAS;
D O I
10.1088/1361-648X/ab3821
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The paper deals with the theoretical consideration of surface plasmon-polaritons in the graphene monolayer, embedded into dielectric with spatially separated gain and losses. It is demonstrated, that presence of gain and losses in the system leads to the formation of additional mode of graphene surface plasmon-polaritons, which does not have its counterpart in the conservative system. When the gain and losses are mutually balanced, the position of exceptional point-transition point between unbroken and broken PT-symmetry-can be effectively tuned by graphene's doping. In the case of unbalanced gain and losses the spectrum of surface plasmon-polaritons contains spectral singularity, whose frequency is also adjustable through the electrostatic gating of graphene.
引用
收藏
页数:8
相关论文
共 53 条
  • [1] Non-Hermitian nanophotonic and plasmonic waveguides
    Alaeian, Hadiseh
    Dionne, Jennifer A.
    [J]. PHYSICAL REVIEW B, 2014, 89 (07)
  • [2] Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns
    Alonso-Gonzalez, P.
    Nikitin, A. Y.
    Golmar, F.
    Centeno, A.
    Pesquera, A.
    Velez, S.
    Chen, J.
    Navickaite, G.
    Koppens, F.
    Zurutuza, A.
    Casanova, F.
    Hueso, L. E.
    Hillenbrand, R.
    [J]. SCIENCE, 2014, 344 (6190) : 1369 - 1373
  • [3] Hybrid graphene plasmonic waveguide modulators
    Ansell, D.
    Radko, I. P.
    Han, Z.
    Rodriguez, F. J.
    Bozhevolnyi, S. I.
    Grigorenko, A. N.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [4] Barton D, 2018, PARITY TIME SYMMETRI
  • [5] A parity-time symmetric coherent plasmonic absorber-amplifier
    Baum, Brian
    Alaeian, Hadiseh
    Dionne, Jennifer
    [J]. JOURNAL OF APPLIED PHYSICS, 2015, 117 (06)
  • [6] Observation of PT phase transition in a simple mechanical system
    Bender, Carl M.
    Berntson, Bjorn K.
    Parker, David
    Samuel, E.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2013, 81 (03) : 173 - 179
  • [7] Real spectra in non-Hermitian Hamiltonians having PT symmetry
    Bender, CM
    Boettcher, S
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5243 - 5246
  • [8] Implementation of PT symmetric devices using plasmonics: principle and applications
    Benisty, Henri
    Degiron, Aloyse
    Lupu, Anatole
    De Lustrac, Andre
    Chenais, Sebastien
    Forget, Sebastien
    Besbes, Mondher
    Barbillon, Gregory
    Bruyant, Aurelien
    Blaize, Sylvain
    Lerondel, Gilles
    [J]. OPTICS EXPRESS, 2011, 19 (19): : 18004 - 18019
  • [9] A PRIMER ON SURFACE PLASMON-POLARITONS IN GRAPHENE
    Bludov, Yu V.
    Ferreira, Aires
    Peres, N. M. R.
    Vasilevskiy, M. I.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (10):
  • [10] Graphene-based polaritonic crystal
    Bludov, Yu V.
    Peres, N. M. R.
    Vasilevskiy, M. I.
    [J]. PHYSICAL REVIEW B, 2012, 85 (24):