On the large time behavior of solutions of Hamilton-Jacobi equations

被引:104
作者
Barles, G
Souganidis, PE
机构
[1] Univ Tours, Fac Sci & Tech, Lab Math & Phys Theor, F-37200 Tours, France
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Hamilton-Jacobi equations; periodicity; ergodic problem; long time behavior; viscosity solutions; hamiltonian systems;
D O I
10.1137/S0036141099350869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the long time behavior of viscosity solutions of first-order Hamilton-Jacobi equations with periodic space dependence. We prove, under sharp conditions, that as time goes to infinity, solutions converge to solutions of the corresponding stationary equation.
引用
收藏
页码:925 / 939
页数:15
相关论文
共 10 条
[1]  
[Anonymous], 1994, MATH APPL
[2]   Ergodic problem for the Hamilton-Jacobi-Bellman equation .1. Existence of the ergodic attractor [J].
Arisawa, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (04) :415-438
[3]   Ergodic problem for the Hamilton-Jacobi-Bellman equation. II [J].
Arisawa, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (01) :1-24
[4]   On convergence of the Lax-Oleinik semi-group [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (03) :267-270
[5]  
Lions P.-L., HOMOGENIZATION HAMIL
[6]  
Lions P-L., 1982, GEN SOLUTIONS HAMILT
[7]   Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations [J].
Namah, G ;
Roquejoffre, JM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) :883-893
[8]  
ROQUEJOFFE JM, CONVERGENCE STEADY S
[9]   Long-time behaviour of the solutions of one-dimensional nonlinear Hamilton-Jacobi equations [J].
Roquejoffre, JM .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (02) :185-189
[10]  
[No title captured]