On the stability of periodic impulsive systems

被引:8
作者
Gladilina, RI [1 ]
Ignat'ev, AO [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Appl Math & Mech, Kiev, Ukraine
关键词
Lyapvnov method; impulsive system; periodic system; stability problem; asymptotical dynamics;
D O I
10.1023/B:MATN.0000036740.50477.42
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider periodic systems of ordinary differential equations with impulse perturbations at fixed points of time. It is assumed that the system possesses the trivial solution. We show that if the trivial solution of the system is stable or asymptotically stable, then it is uniformly stable or uniformly asymptotically stable, respectively. By using the method of Lyapunov functions, we establish criteria of uniform asymptotical stability and instability.
引用
收藏
页码:41 / 47
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 1977, DIFFER EQU
[2]  
Bainov D.D., 1989, Systems with Impulse Effect
[3]  
Barbashin E., 1952, DOKLADY MATH TRANSLA, V86, P453
[4]  
GURGULA SI, 1982, MAT FIZ, P9
[5]  
HALANAI A, 1968, QUALITATIVE THEORY S
[6]   PERIODIC BOUNDARY-VALUE PROBLEMS FOR 2ND ORDER IMPULSIVE DIFFERENTIAL-SYSTEMS [J].
HU, S ;
LAKSHMIKANTHAM, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (01) :75-85
[7]  
KOLMANOVSKII VB, 2000, DIFF URAVN, V36, P1554
[8]   ON QUASI STABILITY FOR IMPULSIVE DIFFERENTIAL-SYSTEMS [J].
LAKSHMIKANTHAM, V ;
LIU, XZ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (07) :819-828
[9]  
MARTYNYUK AA, 1999, UKR MAT ZH, V51, P784
[10]  
Mil'man VD., 1960, Sibirsk. Mat. Zh., V1, P233