Schubert polynomials, Kazhdan-Lusztig basis and characters

被引:7
作者
Roichman, Y [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
D O I
10.1016/S0012-365X(99)00272-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A combinatorial formula for the characters of the homogeneous components of the coinvariant algebra is given. The formula is proved by considering the action of the simple reflections on the Schubert polynomials basis of this algebra. In the symmetric group case, the formula is equivalent to a combinatorial rule for decomposing the homogeneous components into irreducible representations. The proof of the equivalence involves permutation statistics and Kazhdan-Lusztig theory. The formula is very similar to an analogous one for Kazhdan-Lusztig representations of these groups. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:353 / 365
页数:13
相关论文
共 23 条
[1]   PRIMITIVE-IDEALS AND ORBITAL INTEGRALS IN COMPLEX EXCEPTIONAL GROUPS [J].
BARBASCH, D ;
VOGAN, D .
JOURNAL OF ALGEBRA, 1983, 80 (02) :350-382
[2]  
Bernstein I. N., 1973, USP MAT NAUK, V28, P3
[4]   INTEGRAL SYMMETRICAL INVARIANTS OF WEYL AND TORSION GROUPS [J].
DEMAZURE, M .
INVENTIONES MATHEMATICAE, 1973, 21 (04) :287-301
[5]   MAJOR INDEX AND INVERSION NUMBER OF PERMUTATIONS [J].
FOATA, D ;
SCHUTZENBERGER, MP .
MATHEMATISCHE NACHRICHTEN, 1978, 83 :143-159
[6]  
Garsia A. M., 1990, ANAL CETERA, P309
[7]   Iwahori-Hecke algebras of type A, bitraces and symmetric functions [J].
Halverson, T ;
Leduc, R ;
Ram, A .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (09) :401-416
[8]  
Humphreys J.E., 1992, CAMBRIDGE STUDIES AD, V29
[9]   REPRESENTATIONS OF COXETER GROUPS AND HECKE ALGEBRAS [J].
KAZHDAN, D ;
LUSZTIG, G .
INVENTIONES MATHEMATICAE, 1979, 53 (02) :165-184
[10]  
LASCOUX A, 1987, FUNCT ANAL APPL+, V21, P324