Non-coding RNAs and potential therapeutic targeting in cancer

被引:244
作者
Toden, Shusuke [1 ,2 ,3 ]
Zumwalt, Timothy J. [1 ,2 ,3 ]
Goel, Ajay [1 ,2 ,3 ,4 ]
机构
[1] Baylor Univ, Med Ctr, Ctr Gastrointestinal Res, Dallas, TX USA
[2] Baylor Univ, Med Ctr, Ctr Translat Genom & Oncol, Baylor Scott & White Res Inst, Dallas, TX USA
[3] Baylor Univ, Med Ctr, Baylor Res Inst & Sammons Canc Ctr, Charles A Sammons Canc Ctr, Dallas, TX USA
[4] City Hope Comprehens Canc Ctr, Beckman Res Inst, Dept Mol Diagnost & Expt Therapeut, Duarte, CA USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER | 2021年 / 1875卷 / 01期
基金
美国国家卫生研究院;
关键词
Non-coding RNAs; microRNAs; Long non-coding RNAs; piRNAs; snoRNAs; Cancer; Therapy; SMALL-NUCLEOLAR RNAS; NANOPARTICLE-MEDIATED DELIVERY; PIWI-INTERACTING RNAS; TUMOR-SUPPRESSOR; GASTRIC-CANCER; CIRCULAR RNA; IN-VIVO; POSTTRANSCRIPTIONAL REGULATION; CHEMICAL-MODIFICATION; CELLS PROLIFERATION;
D O I
10.1016/j.bbcan.2020.188491
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances have begun to clarify the physiological and pathological roles of non-coding RNAs (ncRNAs) in various diseases, including cancer. Among these, microRNAs (miRNAs) have been the most studied and have emerged as key players that are involved in the regulation of important growth regulatory pathways in cancer pathogenesis. The ability of a single ncRNA to modulate the expression of multiple downstream gene targets and associated pathways, have provided a rationale to pursue them for therapeutic drug development in cancer. In this context, early data from pre-clinical studies have demonstrated that synthetic miRNA-based therapeutic molecules, along with various protective coating approaches, has allowed for their efficient delivery and antitumor activity. In fact, some of the miRNA-based cancer therapeutic strategies have shown promising results even in early-phase human clinical trials. While the enthusiasm for ncRNA-based cancer therapeutics continue to evolve, the field is still in the midst of unraveling a more precise understanding of the molecular mechanisms and specific downstream therapeutic targets of other lesser studied ncRNAs such as the long-non-coding RNAs, transfer RNAs, circular RNAs, small nucleolar RNAs, and piwi-interacting RNAs. This review article provides the current state of knowledge and the evolving principles for ncRNA-based therapeutic approaches in cancer, and specifically highlights the importance of data to date and the approaches that are being developed to overcome the challenges associated with their delivery and mitigating the off-target effects in human cancers.
引用
收藏
页数:15
相关论文
共 233 条
[1]   Long Noncoding RNA, Polycomb, and the Ghosts Haunting INK4b-ARF-INK4a Expression [J].
Aguilo, Francesca ;
Zhou, Ming-Ming ;
Walsh, Martin J. .
CANCER RESEARCH, 2011, 71 (16) :5365-5369
[2]   Delivery of dual miRNA through CD44-targeted mesoporous silica nanoparticles for enhanced and effective triple-negative breast cancer therapy [J].
Ahir, Manisha ;
Upadhyay, Priyanka ;
Ghosh, Avijit ;
Sarker, Sushmita ;
Bhattacharya, Saurav ;
Gupta, Payal ;
Ghosh, Swatilekha ;
Chattopadhyay, Sreya ;
Adhikary, Arghya .
BIOMATERIALS SCIENCE, 2020, 8 (10) :2939-2954
[3]   A combinatorial library of lipid-like materials for delivery of RNAi therapeutics [J].
Akinc, Akin ;
Zumbuehl, Andreas ;
Goldberg, Michael ;
Leshchiner, Elizaveta S. ;
Busini, Valentina ;
Hossain, Naushad ;
Bacallado, Sergio A. ;
Nguyen, David N. ;
Fuller, Jason ;
Alvarez, Rene ;
Borodovsky, Anna ;
Borland, Todd ;
Constien, Rainer ;
de Fougerolles, Antonin ;
Dorkin, J. Robert ;
Jayaprakash, K. Narayanannair ;
Jayaraman, Muthusamy ;
John, Matthias ;
Koteliansky, Victor ;
Manoharan, Muthiah ;
Nechev, Lubomir ;
Qin, June ;
Racie, Timothy ;
Raitcheva, Denitza ;
Rajeev, Kallanthottathil G. ;
Sah, Dinah W. Y. ;
Soutschek, Juergen ;
Toudjarska, Ivanka ;
Vornlocher, Hans-Peter ;
Zimmermann, Tracy S. ;
Langer, Robert ;
Anderson, Daniel G. .
NATURE BIOTECHNOLOGY, 2008, 26 (05) :561-569
[4]   Brief Report: The lincRNA Hotair Is Required for Epithelial-to-Mesenchymal Transition and Stemness Maintenance of Cancer Cell Lines [J].
Alves, Cleidson Padua ;
Fonseca, Aline Simoneti ;
Muys, Bruna Rodrigues ;
Bueno, Rafaela de Barros e Lima ;
Buerger, Matheus Carvalho ;
de Souza, Jorge E. S. ;
Valente, Valeria ;
Zago, Marco Antonio ;
Silva, Wilson Araujo, Jr. .
STEM CELLS, 2013, 31 (12) :2827-2832
[5]   Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma [J].
Babar, Imran A. ;
Cheng, Christopher J. ;
Booth, Carmen J. ;
Liang, Xianping ;
Weidhaas, Joanne B. ;
Saltzman, W. Mark ;
Slack, Frank J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (26) :E1695-E1704
[6]  
Bader Andreas G., 2012, Frontiers in Genetics, V3, P120, DOI 10.3389/fgene.2012.00120
[7]   Progranulin promotes Temozolomide resistance of glioblastoma by orchestrating DNA repair and tumor stemness [J].
Bandey, I. ;
Chiou, S-H ;
Huang, A-P ;
Tsai, J-C ;
Tu, P-h .
ONCOGENE, 2015, 34 (14) :1853-1864
[8]   TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer [J].
Banerjee, Rajat ;
Russo, Nickole ;
Liu, Min ;
Basrur, Venkatesha ;
Bellile, Emily ;
Palanisamy, Nallasivam ;
Scanlon, Christina S. ;
van Tubergen, Elizabeth ;
Inglehart, Ronald C. ;
Metwally, Tarek ;
Mani, Ram-Shankar ;
Yocum, Anastasia ;
Nyati, Mukesh K. ;
Castilho, Rogerio M. ;
Varambally, Sooryanarayana ;
Chinnaiyan, Arul M. ;
D'Silva, Nisha J. .
NATURE COMMUNICATIONS, 2014, 5
[9]   miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents [J].
Baumann, Volker ;
Winkler, Johannes .
FUTURE MEDICINAL CHEMISTRY, 2014, 6 (17) :1967-1984
[10]   LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer [J].
Bhan, Arunoday ;
Mandal, Subhrangsu S. .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2015, 1856 (01) :151-164