Phase-Field Modeling and Numerical Simulation for Ice Melting

被引:7
作者
Wang, Jian [1 ]
Lee, Chaeyoung [2 ]
Lee, Hyun Geun [3 ]
Zhang, Qimeng [4 ]
Yang, Junxiang [2 ]
Yoon, Sungha [2 ]
Park, Jintae [2 ]
Kim, Junseok [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Korea Univ, Dept Math, Seoul 02841, South Korea
[3] Kwangwoon Univ, Dept Math, Seoul 01897, South Korea
[4] Korea Univ, Interdisciplinary Program Visual Informat Proc, Seoul 02841, South Korea
来源
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS | 2021年 / 14卷 / 02期
基金
新加坡国家研究基金会;
关键词
Allen-Cahn equation; phase-field model; ice melting; CAHN-HILLIARD EQUATION; GROWTH; WATER;
D O I
10.4208/nmtma.OA-2020-0023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a mathematical model and present numerical simulations for ice melting phenomena. The model is based on the phase-field modeling for the crystal growth. To model ice melting, we ignore anisotropy in the crystal growth model and introduce a new melting term. The numerical solution algorithm is a hybrid method which uses both the analytic and numerical solutions. We perform various computational experiments. The computational results confirm the accuracy and efficiency of the proposed method for ice melting.
引用
收藏
页码:540 / 558
页数:19
相关论文
共 49 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]  
Briggs W., 1987, A Multigrid Tutorial
[3]   STEFAN AND HELE-SHAW TYPE MODELS AS ASYMPTOTIC LIMITS OF THE PHASE-FIELD EQUATIONS [J].
CAGINALP, G .
PHYSICAL REVIEW A, 1989, 39 (11) :5887-5896
[4]   Numerical tests of a phase field model with second order accuracy [J].
Caginalp, Gunduz ;
Chen, Xinfu ;
Eck, Christof .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (06) :1518-1534
[5]  
Carlson M., 2002, ACM SIGGRAPH/Eurographics Symp. Comp. Anim, P167
[6]   Three-dimensional, fully adaptive simulations of phase-field fluid models [J].
Ceniceros, Hector D. ;
Nos, Rudimar L. ;
Roma, Alexandre M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (17) :6135-6155
[7]   Efficient adaptive three-dimensional phase-field simulation of dendritic crystal growth from various supercoolings using rescaling [J].
Chen, C. C. ;
Lan, C. W. .
JOURNAL OF CRYSTAL GROWTH, 2009, 311 (03) :702-706
[8]   High Accuracy Benchmark Problems for Allen-Cahn and Cahn-Hilliard Dynamics [J].
Church, Jon Matteo ;
Guo, Zhenlin ;
Jimack, Peter K. ;
Madzvamuse, Anotida ;
Promislow, Keith ;
Wetton, Brian ;
Wise, Steven M. ;
Yang, Fengwei .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (04) :947-972
[9]   Numerical study of the Cahn-Hilliard equation in one, two and three dimensions [J].
de Mello, EVL ;
Filho, OTD .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 347 :429-443
[10]   Freezing and melting of water in spherical enclosures of the type used in thermal (ice) storage systems [J].
Eames, IW ;
Adref, KT .
APPLIED THERMAL ENGINEERING, 2002, 22 (07) :733-745