Nonlinear-mode-coupling-induced soliton crystal dynamics in optical microresonators

被引:18
作者
Huang, Tianye [1 ,2 ]
Pan, Jianxing [1 ]
Cheng, Zhuo [1 ]
Xu, Gang [3 ]
Wu, Zhichao [1 ]
Du, Taoyuan [4 ]
Zeng, Shuwen [5 ]
Shum, Perry Ping [1 ]
机构
[1] China Univ Geosci Wuhan, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[2] Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Univ Auckland, Dodd Walls Ctr Photon & Quantum Technol, Dept Phys, Auckland 1142, New Zealand
[4] China Univ Geosci Wuhan, Sch Math & Phys, Wuhan 430074, Peoples R China
[5] Univ Limoges, XLIM Res Inst, CNRS, UMR 7252, F-87060 Limoges, France
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevA.103.023502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dissipative Kerr solitons based on microresonators have wide applications from optical communications to optical ranging for the high-repetition rate and broad bandwidth. Restricted by the bending losses and dispersion control of the optical waveguide, it could be hard to further realize ultrahigh-repetetion rate reaching several terahertz by simply reducing the size of microresonators. Soliton crystals, which completely fill the microresonator with a series of equidistant temporal pulses, can be an effective approach to realize ultrahigh-repetition rate in the common cavity length. In this paper, we investigate the generation of soliton crystals in the presence of nonlinear mode coupling, which can induce a modulation on the background wave and modify the cavity dynamics. Under the condition of suitable wave vector mismatch and nonlinear-coupling-coefficient, high-deterministic perfect soliton crystals can be realized. Besides, the drifting behavior of the soliton crystals is demonstrated to be determined by the match between the wave vector mismatch and nonlinear coupling coefficient. Finally, we successfully observe the recrystallization of the perfect soliton crystals.
引用
收藏
页数:8
相关论文
共 42 条
[1]   Spatial mode-interaction induced single soliton generation in microresonators [J].
Bao, Chengying ;
Xuan, Yi ;
Leaird, Daniel E. ;
Wabnitz, Stefan ;
Qi, Minghao ;
Weiner, Andrew M. .
OPTICA, 2017, 4 (09) :1011-1015
[2]   Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J].
Brasch, V. ;
Geiselmann, M. ;
Herr, T. ;
Lihachev, G. ;
Pfeiffer, M. H. P. ;
Gorodetsky, M. L. ;
Kippenberg, T. J. .
SCIENCE, 2016, 351 (6271) :357-360
[3]  
Cazzanelli M, 2012, NAT MATER, V11, P148, DOI [10.1038/nmat3200, 10.1038/NMAT3200]
[4]   Universal scaling laws of Kerr frequency combs [J].
Coen, Stephane ;
Erkintalo, Miro .
OPTICS LETTERS, 2013, 38 (11) :1790-1792
[5]   Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model [J].
Coen, Stephane ;
Randle, Hamish G. ;
Sylvestre, Thibaut ;
Erkintalo, Miro .
OPTICS LETTERS, 2013, 38 (01) :37-39
[6]   Soliton crystals in Kerr resonators [J].
Cole, Daniel C. ;
Lamb, Erin S. ;
Del'Haye, Pascal ;
Diddams, Scott A. ;
Papp, Scott B. .
NATURE PHOTONICS, 2017, 11 (10) :671-+
[7]   Ultra-dense optical data transmission over standard fibre with a single chip source [J].
Corcoran, Bill ;
Tan, Mengxi ;
Xu, Xingyuan ;
Boes, Andreas ;
Wu, Jiayang ;
Nguyen, Thach G. ;
Chu, Sai T. ;
Little, Brent E. ;
Morandotti, Roberto ;
Mitchell, Arnan ;
Moss, David J. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Optimization of primary Kerr optical frequency combs for tunable microwave generation [J].
Diallo, Souleymane ;
Chembo, Yanne K. .
OPTICS LETTERS, 2017, 42 (18) :3522-3525
[9]  
Drake TE, 2016, CONF LASER ELECTR
[10]   On-chip dual-comb source for spectroscopy [J].
Dutt, Avik ;
Joshi, Chaitanya ;
Ji, Xingchen ;
Cardenas, Jaime ;
Okawachi, Yoshitomo ;
Luke, Kevin ;
Gaeta, Alexander L. ;
Lipson, Michal .
SCIENCE ADVANCES, 2018, 4 (03)