Inverse problems for a conformable fractional Sturm-Liouville operator

被引:15
作者
Adalar, Ibrahim [1 ]
Ozkan, Ahmet Sinan [2 ]
机构
[1] Sivas Cumhuriyet Univ, Zara Veysel Dursun Coll Appl Sci, TR-58140 Sivas, Turkey
[2] Sivas Cumhuriyet Univ, Fac Sci, Dept Math, TR-58140 Sivas, Turkey
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2020年 / 28卷 / 06期
关键词
Inverse problem; conformable fractional derivatives; Weyl function; Hochstadt-Lieberman theorem; SPECTRAL PROBLEMS; BOUNDARY;
D O I
10.1515/jiip-2019-0058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a Sturm-Liouville boundary value problem which includes conformable fractional derivatives of order a, 0 <= alpha <= 1 is considered. We give some uniqueness theorems for the solutions of inverse problems according to the Weyl function, two given spectra and classical spectral data. We also study the half-inverse problem and prove a Hochstadt-Lieberman-type theorem.
引用
收藏
页码:775 / 782
页数:8
相关论文
共 36 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]  
Al-Towailb M. A., 2017, ELECT J DIFFERENTIAL, V2017
[3]   Conformable fractional Sturm-Liouville equation [J].
Allahverdiev, Bilender P. ;
Tuna, Huseyin ;
Yalcinkaya, Yuksel .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) :3508-3526
[4]   About a question of intrinsic value theory. [J].
Ambarzumian, V. .
ZEITSCHRIFT FUR PHYSIK, 1929, 53 (9-10) :690-695
[5]  
[Anonymous], 2010, NEW TRENDS NANOTECHN
[6]  
[Anonymous], 1991, MATH APPL SOV SER
[7]   New properties of conformable derivative [J].
Atangana, Abdon ;
Baleanu, Dumitru ;
Alsaedi, Ahmed .
OPEN MATHEMATICS, 2015, 13 :889-898
[9]  
Chadan K., 1997, SIAM MONOGR MATH MOD
[10]  
FREILING G., 2001, Inverse Sturm-Liouville Problems and Their Applications