Ti3C2Tx MXene for electrode materials of supercapacitors

被引:254
作者
Ma, Rui [1 ]
Chen, Zetong [1 ]
Zhao, Danna [1 ]
Zhang, Xujing [1 ]
Zhuo, Jingting [1 ]
Yin, Yajiang [4 ,5 ]
Wang, Xiaofeng [3 ,4 ,5 ]
Yang, Guowei [1 ,2 ]
Yi, Fang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Guangzhou Key Lab Flexible Elect Mat & Wearable D, Guangzhou 510275, Peoples R China
[3] Tsinghua Univ, Dept Precis Instrument, Beijing 100084, Peoples R China
[4] Corp Accelerator, Pearl River Delta, Res Inst Tsinghua, Guangzhou 510530, Peoples R China
[5] Corp Accelerator, Guangzhou Grower Tsingron Energy Co Ltd, Guangzhou 510530, Peoples R China
关键词
2-DIMENSIONAL TITANIUM CARBIDE; HIGH-PERFORMANCE; ELECTROCHEMICAL PERFORMANCE; ENERGY-STORAGE; NANOTUBE COMPOSITES; HIGH-CAPACITANCE; VOLUMETRIC CAPACITANCE; STRUCTURE DESIGN; DOPED GRAPHENE; 1ST PRINCIPLES;
D O I
10.1039/d1ta00681a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To promote the development of supercapacitors and their applications in modern electronics, it is crucial to explore novel supercapacitor electrode materials. As a representative member of the rising 2D MXenes, Ti3C2Tx MXene has shown tremendous potential for supercapacitor electrodes owing to its unique physicochemical properties. Here, the most recent advances in Ti3C2Tx-based supercapacitor electrodes are comprehensively reviewed, with an emphasis on the vital role that Ti3C2Tx MXene plays in the remarkable electrochemical performance and related mechanisms. The fabrication methods, electrode structures, working mechanisms, electrochemical performance and related influencing factors, mechanical properties and applications, as well as the associated advantages/disadvantages of Ti3C2Tx-based supercapacitor electrodes are thoroughly and exhaustively summarized and discussed. Based on the recent progress, the existing challenges along with the corresponding possible solutions, and the future prospects of Ti3C2Tx-based materials for supercapacitors are also outlined and discussed.
引用
收藏
页码:11501 / 11529
页数:29
相关论文
共 197 条
[1]   Auto-programmed heteroarchitecturing: Self-assembling ordered mesoporous carbon between two-dimensional Ti3C2Tx MXene layers [J].
Allah, Abeer Enaiet ;
Wang, Jie ;
Kaneti, Yusuf Valentino ;
Li, Tao ;
Farghali, Ahmed A. ;
Khedr, Mohamed Hamdy ;
Nanjundan, Ashok Kumar ;
Ding, Bing ;
Dou, Hui ;
Zhang, Xiaogang ;
Yoshio, Bando ;
Yamauchi, Yusuke .
NANO ENERGY, 2019, 65
[2]   Computational characterization of lightweight multilayer MXene Li-ion battery anodes [J].
Ashton, Michael ;
Hennig, Richard G. ;
Sinnott, Susan B. .
APPLIED PHYSICS LETTERS, 2016, 108 (02)
[3]   Porous Cryo-Dried MXene for Efficient Capacitive Deionization [J].
Bao, Weizhai ;
Tang, Xiao ;
Guo, Xin ;
Choi, Sinho ;
Wang, Chengyin ;
Gogotsi, Yury ;
Wang, Guoxiu .
JOULE, 2018, 2 (04) :778-787
[4]   Ionic sieving through Ti3C2(OH)2 MXene: First-principles calculations [J].
Berdiyorov, Golibjon R. ;
Madjet, Mohamed E. ;
Mahmoud, Khaled A. .
APPLIED PHYSICS LETTERS, 2016, 108 (11)
[5]   Polymer Electronics: To Be or Not to Be? [J].
Blom, Paul W. M. .
ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (06)
[6]   Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene) [J].
Boota, Muhammad ;
Anasori, Babak ;
Voigt, Cooper ;
Zhao, Meng-Qiang ;
Barsoum, Michel W. ;
Gogotsi, Yury .
ADVANCED MATERIALS, 2016, 28 (07) :1517-1522
[7]   Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors [J].
Cao, Jianyun ;
Li, Xiaohong ;
Wang, Yaming ;
Walsh, Frank C. ;
Ouyang, Jia-Hu ;
Jia, Dechang ;
Zhou, Yu .
JOURNAL OF POWER SOURCES, 2015, 293 :657-674
[8]   Microbe-Assisted Assembly of Ti3C2Tx MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage [J].
Cao, Junming ;
Sun, Ziqi ;
Li, Junzhi ;
Zhu, Yukun ;
Yuan, Zeyu ;
Zhang, Yuming ;
Li, Dongdong ;
Wang, Lili ;
Han, Wei .
ACS NANO, 2021, 15 (02) :3423-3433
[9]   Tunable agglomeration of Co3O4 nanowires as the growing core for in-situ formation of Co2NiO4 assembled with polyaniline-derived carbonaceous fibers as the high-performance asymmetric supercapacitors [J].
Cao, Junming ;
Li, Junzhi ;
Zhou, Liang ;
Xi, Yunlong ;
Cao, Xu ;
Zhang, Yuming ;
Han, Wei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 853 (853)
[10]   Mn-Doped Ni/Co LDH Nanosheets Grown on the Natural N-Dispersed PANI-Derived Porous Carbon Template for a Flexible Asymmetric Supercapacitor [J].
Cao, Junming ;
Li, Junzhi ;
Li, La ;
Zhang, Yu ;
Cai, Dong ;
Chen, Duo ;
Han, Wei .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (12) :10699-10707