A cookbook for DNase Hi-C

被引:11
|
作者
Gridina, Maria [1 ]
Mozheiko, Evgeniy [1 ]
Valeev, Emil [1 ,2 ]
Nazarenko, Ludmila P. [3 ]
Lopatkina, Maria E. [3 ]
Markova, Zhanna G. [5 ]
Yablonskaya, Maria I. [4 ]
Voinova, Viktoria Yu [4 ]
Shilova, Nadezhda V. [5 ]
Lebedev, Igor N. [3 ]
Fishman, Veniamin [1 ,2 ]
机构
[1] RAS, SB, Inst Cytol & Genet, Lavrentjeva Ave 10, Novosibirsk, Russia
[2] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk, Russia
[3] Tomsk Natl Res Med Ctr, Res Inst Med Genet, Kooperativny Str 5, Tomsk, Russia
[4] Clin Res Inst Pediat YE Veltischev, Moscow, Russia
[5] Res Ctr Med Genet, Moskvorechie Str 1, Moscow, Russia
关键词
DNAse I; Hi-C; Genome organization; Human peripheral blood; K562; LNCaP; A549; GENOME ARCHITECTURE; READ ALIGNMENT; PRINCIPLES; COMPLEX; MAP;
D O I
10.1186/s13072-021-00389-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background The Hi-C technique is widely employed to study the 3-dimensional chromatin architecture and to assemble genomes. The conventional in situ Hi-C protocol employs restriction enzymes to digest chromatin, which results in nonuniform genomic coverage. Using sequence-agnostic restriction enzymes, such as DNAse I, could help to overcome this limitation. Results In this study, we compare different DNAse Hi-C protocols and identify the critical steps that significantly affect the efficiency of the protocol. In particular, we show that the SDS quenching strategy strongly affects subsequent chromatin digestion. The presence of biotinylated oligonucleotide adapters may lead to ligase reaction by-products, which can be avoided by rational design of the adapter sequences. Moreover, the use of nucleotide-exchange enzymes for biotin fill-in enables simultaneous labelling and repair of DNA ends, similar to the conventional Hi-C protocol. These improvements simplify the protocol, making it less expensive and time-consuming. Conclusions We propose a new robust protocol for the preparation of DNAse Hi-C libraries from cultured human cells and blood samples supplemented with experimental controls and computational tools for the evaluation of library quality.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Measuring the reproducibility and quality of Hi-C data
    Yardimci, Galip Gurkan
    Ozadam, Hakan
    Sauria, Michael E. G.
    Ursu, Oana
    Yan, Koon-Kiu
    Yang, Tao
    Chakraborty, Abhijit
    Kaul, Arya
    Lajoie, Bryan R.
    Song, Fan
    Zhan, Ye
    Ay, Ferhat
    Gerstein, Mark
    Kundaje, Anshul
    Li, Qunhua
    Taylor, James
    Yue, Feng
    Dekker, Job
    Noble, William S.
    GENOME BIOLOGY, 2019, 20 (1)
  • [32] Significance in scale space for Hi-C data
    Liu, Rui
    Zhang, Zhengwu
    Won, Hyejung
    Marron, J. S.
    BIOINFORMATICS, 2025, 41 (03)
  • [33] Comparison of normalization methods for Hi-C data
    Lyu, Hongqiang
    Liu, Erhu
    Wu, Zhifang
    BIOTECHNIQUES, 2020, 68 (02) : 56 - 64
  • [34] Software tools for visualizing Hi-C data
    Yardimci, Galip Gurkan
    Noble, William Stafford
    GENOME BIOLOGY, 2017, 18
  • [35] Comparison of Capture Hi-C Analytical Pipelines
    Aljogol, Dina
    Thompson, I. Richard
    Osborne, Cameron S.
    Mifsud, Borbala
    FRONTIERS IN GENETICS, 2022, 13
  • [36] The Bioinformatic Applications of Hi-C and Linked Reads
    Jiang, Libo
    Quail, Michael A.
    Fraser-Govil, Jack
    Wang, Haipeng
    Shi, Xuequn
    Oliver, Karen
    Gomez, Esther Mellado
    Yang, Fengtang
    Ning, Zemin
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2024, 22 (04)
  • [37] MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments
    Alinejad-Rokny, Hamid
    Modegh, Rassa Ghavami
    Rabiee, Hamid R. R.
    Sarbandi, Ehsan Ramezani
    Rezaie, Narges
    Tam, Kin Tung
    Forrest, Alistair R. R.
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (06)
  • [38] HCMB: A stable and efficient algorithm for processing the normalization of highly sparse Hi-C contact data
    Wu, Honglong
    Wang, Xuebin
    Chu, Mengtian
    Li, Dongfang
    Cheng, Lixin
    Zhou, Ke
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 2637 - 2645
  • [39] Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding?
    Kadota, Mitsutaka
    Nishimura, Osamu
    Miura, Hisashi
    Tanaka, Kaori
    Hiratani, Ichiro
    Kuraku, Shigehiro
    GIGASCIENCE, 2020, 9 (01):
  • [40] A Comprehensive Evaluation of Generalizability of Deep Learning-Based Hi-C Resolution Improvement Methods
    Murtaza, Ghulam
    Jain, Atishay
    Hughes, Madeline
    Wagner, Justin
    Singh, Ritambhara
    GENES, 2024, 15 (01)