Effects of Interfacial Oxidization on Magnetic Damping and Spin-Orbit Torques

被引:10
作者
Lee, DongJoon [1 ,2 ]
Jeong, WonMin [2 ]
Yun, DeokHyun [2 ,3 ]
Park, Seung-Young [4 ]
Ju, Byeong-Kwon [3 ]
Lee, Kyung-Jin [5 ]
Min, Byoung-Chul [2 ,6 ]
Koo, Hyun Cheol [1 ,2 ]
Lee, OukJae [2 ]
机构
[1] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[2] Korea Inst Sci & Technol, Ctr Spintron, Seoul 02792, South Korea
[3] Korea Univ, Dept Elect Engn, Seoul 02841, South Korea
[4] Korea Basic Sci Inst, Spin Engn Phys Team, Daejeon 34133, South Korea
[5] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
[6] Korea Univ Sci & Technol, KIST Sch, Div Nano & Informat Technol, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
spintronics; spin-orbit torque; spin-Hall effect; Gilbert damping; interfacial magnetic oxide; magnetic resonance;
D O I
10.1021/acsami.1c00608
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigate the effects of interfacial oxidation on the perpendicular magnetic anisotropy, magnetic damping, and spin-orbit torques in heavy-metal (Pt)/ferromagnet (Co or NiFe)/capping (MgO/Ta, HfOx, or TaN) structures. At room temperature, the capping materials influence the effective surface magnetic anisotropy energy density, which is associated with the formation of interfacial magnetic oxides. The magnetic damping parameter of Co is considerably influenced by the capping material (especially MgO) while that of NiFe is not. This is possibly due to extra magnetic damping via spin-pumping process across the Co/CoO interface and incoherent magnon generation (spin fluctuation) developed in the antiferromagnetic CoO. It is also observed that both antidamping and field-like spin-orbit torque efficiencies vary with the capping material in the thickness ranges we examined. Our results reveal the crucial role of interfacial oxides on the perpendicular magnetic anisotropy, magnetic damping, and spin-orbit torques.
引用
收藏
页码:19414 / 19421
页数:8
相关论文
共 43 条
[1]   Intrinsic spin currents in ferromagnets [J].
Amin, V. P. ;
Li, Junwen ;
Stiles, M. D. ;
Haney, P. M. .
PHYSICAL REVIEW B, 2019, 99 (22)
[2]   Spin transport at interfaces with spin-orbit coupling: Formalism [J].
Amin, V. P. ;
Stiles, M. D. .
PHYSICAL REVIEW B, 2016, 94 (10)
[3]  
Bauer U, 2015, NAT MATER, V14, P174, DOI [10.1038/NMAT4134, 10.1038/nmat4134]
[4]   Reversible Control of Co Magnetism by Voltage-Induced Oxidation [J].
Bi, Chong ;
Liu, Yaohua ;
Newhouse-Illige, T. ;
Xu, M. ;
Rosales, M. ;
Freeland, J. W. ;
Mryasov, Oleg ;
Zhang, Shufeng ;
te Velthuis, S. G. E. ;
Wang, W. G. .
PHYSICAL REVIEW LETTERS, 2014, 113 (26)
[5]   Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications [J].
Dieny, B. ;
Chshiev, M. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (02)
[6]   Relaxation mechanism in NiFe thin films driven by spin angular momentum absorption throughout the antiferromagnetic phase transition in native surface oxides [J].
Frangou, L. ;
Forestier, G. ;
Auffret, S. ;
Gambarelli, S. ;
Baltz, V. .
PHYSICAL REVIEW B, 2017, 95 (05)
[7]   Enhanced Spin Pumping Efficiency in Antiferromagnetic IrMn Thin Films around the Magnetic Phase Transition [J].
Frangou, L. ;
Oyarzun, S. ;
Auffret, S. ;
Vila, L. ;
Gambarelli, S. ;
Baltz, V. .
PHYSICAL REVIEW LETTERS, 2016, 116 (07)
[8]  
Fukami S, 2016, NAT MATER, V15, P535, DOI [10.1038/nmat4566, 10.1038/NMAT4566]
[9]   Penetration Depth of Transverse Spin Current in Ultrathin Ferromagnets [J].
Ghosh, A. ;
Auffret, S. ;
Ebels, U. ;
Bailey, W. E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (12)
[10]  
Gurvich L.V., 1989, THERMODYNAMIC PROPER