3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries

被引:464
作者
Jin, Chengbin [1 ]
Sheng, Ouwei [1 ]
Luo, Jianmin [1 ]
Yuan, Huadong [1 ]
Fang, Cong [1 ]
Zhang, Wenkui [1 ]
Huang, Hui [1 ]
Gan, Yongping [1 ]
Xia, Yang [1 ]
Liang, Chu [1 ]
Zhang, Jun [1 ]
Tao, Xinyong [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium metal; Lithiophilic scaffold; ZnO quantum dots; 3D Li; LiCoO2; DENDRITE-FREE; ANODE MATERIALS; CURRENT COLLECTOR; HIGH-CAPACITY; PERFORMANCE; DEPOSITION; LAYER; ELECTROLYTE; FABRICATION; CHALLENGES;
D O I
10.1016/j.nanoen.2017.05.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal as an attractive anode material has been widely used in the advanced energy storage technology such as lithium-sulfur and lithium-air batteries. However, suffering from the uncontrollable deposition, growth of lithium dendrite and the serious volume change within cycling process, the commercial application of lithium anode is impeded by the safety hazards and limited span-life. Here, we demonstrate a kind of bamboo-derived 3D hierarchical porous carbon decorated by ZnO quantum dots which can serve as a lithiophilic scaffold for dendrite-free Li metal anode. This carbon scaffold is stable against the serious volumetric change during cycles. In addition, the 3D porous scaffold can reduce the effective local current density. Most importantly, the lithiophilic ZnO quantum dots within the carbon can be used to induce lithium deposition. Notably, lithium metal up to 131 mAh cm(-2) can be confined within ZnO@HPC, achieving acceptable volume expansion, considerable reduction in overpotential and effective dendrite suppression. Thus, 3D Li within ZnO@HPC scaffold could exhibit better capability and much lower voltage hysteresis when compared with Li foil in cells paired with LiCoO2. The function of the ZnO decorated 3D hierarchical porous carbon scaffold might provide innovative insights into the design principles for metallic lithium anodes.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 62 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode [J].
Bieker, Georg ;
Winter, Martin ;
Bieker, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :8670-8679
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]  
Cheng X.-B., 2017, ENERGY STORAGE MAT
[5]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895
[6]   A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Wei, Fei ;
Zhang, Ji-Guang ;
Zhang, Qiang .
ADVANCED SCIENCE, 2016, 3 (03)
[7]   Hybrid Hairy Nanoparticle Electrolytes Stabilizing Lithium Metal Batteries [J].
Choudhury, Snehashis ;
Agrawal, Akanksha ;
Wei, Shuya ;
Jeng, Emily ;
Archer, Lynden A. .
CHEMISTRY OF MATERIALS, 2016, 28 (07) :2147-2157
[8]   A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles [J].
Choudhury, Snehashis ;
Mangal, Rahul ;
Agrawal, Akanksha ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2015, 6
[9]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[10]   Synthesis of boron carbide nanoflakes via a bamboo-based carbon thermal reduction method [J].
Du, Jun ;
Li, Qianqian ;
Xia, Yang ;
Cheng, Xuejuan ;
Gan, Yongping ;
Huang, Hui ;
Zhang, Wenkui ;
Tao, Xinyong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 581 :128-132